数学模型姜启源第五.pptx
《数学模型姜启源第五.pptx》由会员分享,可在线阅读,更多相关《数学模型姜启源第五.pptx(111页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第四四章章 数数学学规规划划模模型型 4.1 奶制品的生奶制品的生产与与销售售4.2 自来水自来水输送与送与货机装运机装运4.3 汽汽车生生产与原油采与原油采购4.4 接力接力队选拔和拔和选课策略策略4.5 饮料厂的生料厂的生产与与检修修4.6 钢管和易拉罐下料管和易拉罐下料4.7 广告投入与升广告投入与升级调薪薪4.8 投投资的的风险与收益与收益第1页/共111页企企业生生产计划划4.1 奶制品的生奶制品的生产与与销售售空间层次空间层次工厂级:根据外部需求和内部设备、人力、原料等工厂级:根据外部需求和内部设备、人力、原料等条件,以最大利润为目标制订产品生产计划;条件,以最大利润为目标制订产
2、品生产计划;车间级:根据生产计划、工艺流程、资源约束及费车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划用参数等,以最小成本为目标制订生产批量计划.时间层次时间层次若短时间内外部需求和内部资源等不随时间变化,可若短时间内外部需求和内部资源等不随时间变化,可制订制订单阶段生产计划单阶段生产计划,否则应制订多阶段生产计划,否则应制订多阶段生产计划.本节课题本节课题第2页/共111页例例1 加工奶制品的生加工奶制品的生产计划划1桶桶牛奶牛奶 3kgA1 12h 8h 4kgA2 或或获利获利24元元/kg 获利获利16元元/kg 50桶牛奶桶牛奶 时间时间480
3、h 至多加工至多加工100kgA1 制制订生生产计划,使每天划,使每天获利最大利最大 35元可买到元可买到1桶牛奶,买吗?若买,每天最多买多少桶牛奶,买吗?若买,每天最多买多少?可聘用临时工人,付出的工资最多是每小时几元可聘用临时工人,付出的工资最多是每小时几元?A1的获利增加到的获利增加到 30元元/kg,应否改变生产计划?,应否改变生产计划?每天:每天:问题第3页/共111页1桶桶牛奶牛奶 3kgA1 12h 8h 4kgA2 或或获利获利24元元/kg 获利获利16元元/kg x1桶牛奶生产桶牛奶生产A1 x2桶牛奶生产桶牛奶生产A2 获利获利 243x1 获利获利 164 x2 原料供
4、应原料供应 劳动时间劳动时间 加工能力加工能力 决策决策变量量目目标函数函数每天获利每天获利约束条件束条件非负约束非负约束 线性线性规划规划模型模型(LP)时间时间480h 至多加工至多加工100kgA1 50桶牛奶桶牛奶 每天每天基本基本模型模型第4页/共111页模型分析与假模型分析与假设比比例例性性 可可加加性性 连续性连续性 xi对目标函数的对目标函数的“贡贡献献”与与xi取值成正比取值成正比 xi对约束条件的对约束条件的“贡贡献献”与与xi取值成正比取值成正比 xi对目标函数的对目标函数的“贡贡献献”与与xj取值无关取值无关 xi对约束条件的对约束条件的“贡贡献献”与与xj取值无关取值
5、无关 xi取值连续取值连续 A1,A2每千克的获利是与各自每千克的获利是与各自产量无关的常数产量无关的常数每桶牛奶加工每桶牛奶加工A1,A2的数量的数量,时时间是与各自产量无关的常数间是与各自产量无关的常数A1,A2每千克的获利是与相互每千克的获利是与相互产量无关的常数产量无关的常数每桶牛奶加工每桶牛奶加工A1,A2的数量的数量,时时间是与相互产量无关的常数间是与相互产量无关的常数加工加工A1,A2的牛奶桶数是实数的牛奶桶数是实数 线性性规划模型划模型第5页/共111页模型求解模型求解图解法解法x1x2OABCDl1l2l3l4l5约约束束条条件件目标目标函数函数 z=0z=2400z=336
6、0z=c(常数常数)等值线等值线c在在B(20,30)点得到最优解点得到最优解.目标函数和约束条件是线性函数目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形可行域为直线段围成的凸多边形 目标函数的等值线为直线目标函数的等值线为直线 最最优解一定在凸多解一定在凸多边形的某个形的某个顶点取得点取得.第6页/共111页模型求解模型求解软件件实现LINGO model:max=72*x1+64*x2;milk x1+x250;time 12*x1+8*x2480;cpct 3*x1100;end Global optimal solution found.Objective value:33
7、60.000 Total solver iterations:2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 MILK 0.000000 48.00000 TIME 0.000000 2.000000 CPCT 40.00000 0.000000 20桶牛奶生产桶牛奶生产A1,30桶生产桶生产A2,利润,利润3360元元.第7页/共111页结果解果解释Global optimal solution
8、 found.Objective value:3360.000 Total solver iterations:2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 MILK 0.000000 48.00000 TIME 0.000000 2.000000 CPCT 40.00000 0.000000 model:max=72*x1+64*x2;milk x1+x250;time 12*x1+8*x24
9、80;cpct 3*x1100;end三三种种资资源源“资源资源”剩余为零的约束为紧约束(有效约束)剩余为零的约束为紧约束(有效约束)原料无剩余原料无剩余时间无剩余时间无剩余加工能力剩余加工能力剩余40第8页/共111页结果解果解释Global optimal solution found.Objective value:3360.000 Total solver iterations:2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1
10、 3360.000 1.000000 MILK 0.000000 48.00000 TIME 0.000000 2.000000 CPCT 40.00000 0.000000最优解下最优解下“资源资源”增加增加1单位单位“效益效益”的增量的增量 35元可买到元可买到1桶牛奶,要买吗桶牛奶,要买吗?35 48,应该买!应该买!聘用临时工人付出的工资最多每小时几元聘用临时工人付出的工资最多每小时几元?2元!元!原料增加原料增加1单位单位,利润增长利润增长48 时间增加时间增加1单位单位,利润增长利润增长2 加工能力增长不影响利润加工能力增长不影响利润影子价格影子价格 第9页/共111页Ranges
11、 in which the basis is unchanged:Objective Coefficient Ranges Current Allowable AllowableVariable Coefficient Increase Decrease X1 72.00000 24.00000 8.000000 X2 64.00000 8.000000 16.00000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease MILK 50.00000 10.00000 6.666667 TIME
12、 480.0000 53.33333 80.00000 CPCT 100.0000 INFINITY 40.00000 最优解不变时目标函最优解不变时目标函数系数允许变化范围数系数允许变化范围 敏感性分析敏感性分析(“LINGO|Ranges”)x1系数范围系数范围(64,96)x2系数范围系数范围(48,72)A1获利增加到获利增加到 30元元/kg,应否改变生产计划,应否改变生产计划?x1系数由系数由24 3=72增加增加为为30 3=90,在在允许范围内允许范围内 不变!不变!(约束条件不变约束条件不变)第10页/共111页结果解果解释Ranges in which the basis
13、is unchanged:Objective Coefficient Ranges Current Allowable AllowableVariable Coefficient Increase Decrease X1 72.00000 24.00000 8.000000 X2 64.00000 8.000000 16.00000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease MILK 50.00000 10.00000 6.666667 TIME 480.0000 53.33333 8
14、0.00000 CPCT 100.0000 INFINITY 40.00000影子价格有意义时约束右端的允许变化范围影子价格有意义时约束右端的允许变化范围 原料最多增加原料最多增加10 时间最多增加时间最多增加53 35元可买到元可买到1桶牛奶桶牛奶,每天最多买多少每天最多买多少?最多买最多买10桶桶!目标函数不变目标函数不变充分条件!第11页/共111页例例2 奶制品的生奶制品的生产销售售计划划 在例在例1基础上深加工基础上深加工1桶桶牛奶牛奶 3kgA1 12h 8h 4kgA2 或或获利获利24元元/kg 获利获利16元元/kg 0.8kgB1 2h,3元元1kg获利获利44元元/kg
15、0.75kgB2 2h,3元元1kg获利获利32元元/kg 制制订生生产计划,使每天划,使每天净利利润最大最大 30元可增加元可增加1桶牛奶,桶牛奶,3元可增加元可增加1h时间,应否投资?现时间,应否投资?现 投资投资150元,可赚回多少?元,可赚回多少?50桶牛奶桶牛奶,480h 至多至多100kgA1 B1,B2的获利经常有的获利经常有10%的波动,对计划有无影响?的波动,对计划有无影响?每天销售每天销售10kgA1的合同必须满足,对利润有什么影响?的合同必须满足,对利润有什么影响?第12页/共111页1桶桶牛奶牛奶 3kg A1 12h 8h 4kg A2 或或获利获利24元元/kg 获
16、利获利16元元/kg 0.8kg B12h,3元元1kg获利获利44元元/kg 0.75kg B22h,3元元1kg获利获利32元元/kg 出售出售x1 kg A1,x2 kg A2,x3 kg B1,x4 kg B2原料原料供应供应 劳动劳动时间时间 加工能力加工能力 决策决策变量量目目标函数函数利润利润约束束条件条件非负约束非负约束 x5 kg A1加工加工B1,x6 kg A2加工加工B2附加约束附加约束 基本模型基本模型第13页/共111页模型求解模型求解软件件实现 LINGO Global optimal solution found.Objective value:3460.800
17、 Total solver iterations:2 Variable Value Reduced Cost X1 0.000000 1.680000 X2 168.0000 0.000000 X3 19.20000 0.000000 X4 0.000000 0.000000 X5 24.00000 0.000000 X6 0.000000 1.520000 Row Slack or Surplus Dual Price 1 3460.800 1.000000 MILK 0.000000 3.160000 TIME 0.000000 3.260000 CPCT 76.00000 0.00000
18、0 5 0.000000 44.00000 6 0.000000 32.00000第14页/共111页Global optimal solution found.Objective value:3460.800 Total solver iterations:2 Variable Value Reduced Cost X1 0.000000 1.680000 X2 168.0000 0.000000 X3 19.20000 0.000000 X4 0.000000 0.000000 X5 24.00000 0.000000 X6 0.000000 1.520000 Row Slack or S
19、urplus Dual Price 1 3460.800 1.000000 MILK 0.000000 3.160000 TIME 0.000000 3.260000 CPCT 76.00000 0.000000 5 0.000000 44.00000 6 0.000000 32.00000结果解果解释每天销售每天销售168 kgA2和和19.2 kgB1,利润利润3460.8(元)(元)8桶牛奶加工成桶牛奶加工成A1,42桶牛奶加工成桶牛奶加工成A2,将得到的将得到的24kgA1全全部加工成部加工成B1 除加工能力外均为除加工能力外均为紧约束紧约束第15页/共111页结果解果解释Global
20、 optimal solution found.Objective value:3460.800 Total solver iterations:2 Variable Value Reduced Cost X1 0.000000 1.680000 X2 168.0000 0.000000 X3 19.20000 0.000000 X4 0.000000 0.000000 X5 24.00000 0.000000 X6 0.000000 1.520000 Row Slack or Surplus Dual Price 1 3460.800 1.000000 MILK 0.000000 3.160
21、000 TIME 0.000000 3.260000 CPCT 76.00000 0.000000 5 0.000000 44.00000 6 0.000000 32.00000增加增加1桶牛奶使利润桶牛奶使利润增长增长3.1612=37.92增加增加1h时间使利润时间使利润增长增长3.26 30元可增加元可增加1桶牛奶,桶牛奶,3元可增加元可增加1h时间,时间,应否投资?现投资应否投资?现投资150元,可赚回多少?元,可赚回多少?投资投资150元增加元增加5桶牛桶牛奶奶,可赚回可赚回189.6元元(大于大于增加时间的利润增长增加时间的利润增长).第16页/共111页结果解果解释B1,B2的获
22、利有的获利有10%的波动,对计划有无影响的波动,对计划有无影响 Ranges in which the basis is unchanged:Objective Coefficient Ranges Current Allowable AllowableVariable Coefficient Increase Decrease X1 24.00000 1.68000 INFINITY X2 16.00000 8.15000 2.10000 X3 44.00000 19.75000 3.166667 X4 32.00000 2.026667 INFINITY X5 -3.00000 15.80
23、000 2.533333 X6 -3.00000 1.52000 INFINITY B1获利下降获利下降10%,超,超出出X3 系数允许范围系数允许范围B2获利上升获利上升10%,超,超出出X4 系数允许范围系数允许范围波波动对计划有影响划有影响生产计划应重新制订:如将生产计划应重新制订:如将x3的系数改为的系数改为39.6计算,计算,会发现结果有很大变化会发现结果有很大变化.敏感性分析敏感性分析 第17页/共111页结果解果解释x1从从0开始增加一个单开始增加一个单位时,最优目标函数位时,最优目标函数值将减少值将减少1.68Reduced Cost是有意义、是有意义、有条件的有条件的(LIN
24、GO没有没有给出给出)每天销售每天销售10kgA1的合同必须满足,的合同必须满足,对利润有什么影响?对利润有什么影响?公司利润减少公司利润减少1.6810=16.8(元)(元)最优利润为最优利润为 3460.8 16.8=3444 Global optimal solution found.Objective value:3460.800 Total solver iterations:2 Variable Value Reduced Cost X1 0.000000 1.680000 X2 168.0000 0.000000 X3 19.20000 0.000000 X4 0.000000
25、0.000000 X5 24.00000 0.000000 X6 0.000000 1.520000 Row Slack or Surplus Dual Price 1 3460.800 1.000000 MILK 0.000000 3.160000 TIME 0.000000 3.260000 CPCT 76.00000 0.000000 5 0.000000 44.00000 6 0.000000 32.00000第18页/共111页小小结与与评注注 由于产品利润、加工时间等均为常数,可由于产品利润、加工时间等均为常数,可 建立建立线性规划线性规划模型模型.线性规划模型的三要素:线性规划模
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学模型 姜启源 第五
限制150内