微电子工程学.pptx
《微电子工程学.pptx》由会员分享,可在线阅读,更多相关《微电子工程学.pptx(173页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.1 MOCVD技术的一般特点8.1.2 MOCVD生长过程及参数控制8.1.3 对于源的讨论8.2 分子束外延(MBE)技术简介8.3 超晶格与量子阱材料8.3.1 半导体超晶格研究的主要内容8.3.2 半导体超晶格的分类8.4 超晶格材料制作的器件8.4.1 光学器件8.4.2 高速电子器件及其它器件8.5 深亚微米技术的发展与光计算机8.5.1 深亚微米技术的发展8.5.2 光学器件与光计算机 第1页/共173页2第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况
2、金属有机化合物的制备起源于1939年。1957年美国化学学会(ACS)召开了一次有机金属化合物的学术会议.用金属有机化合物制备半导体材料始于60年代末。1968年H.M.Manasevit第一次成功地在Al2O3上生长了GaAs以后,陆续有人研究用这种方法制备半导体膜并用来制造器件。1975至1980年间,人们对同质外延进行了广泛研究,并用来制造发光器件及其它有希望的器件。在此基础上,分别于1981年、1984年召开了两次国际会议讨论电子材料制备中的金属有机化合物汽相淀积技术,涉及了迄今为止所发现的III族、族、族等化合物半导体材料制备技术。第2页/共173页3第8 8章 微电子工程前沿课题
3、8.1 金属有机物化学汽相淀积(MOCVD)技术概况从目前研究的进展来看,对MOCVD技术中存在的问题有了比较明确的认识,归纳起来有以下几点:(1)在同质外延中最大的问题是源材料的纯度;(2)在异质外延中最大的问题是衬底引起的自掺杂;(3)晶体生长的取向及完整性也存在着某些问题。尽管有这些问题,但由于MOCVD技术的突出优点及所展示出的可能的应用前景,它已经成为令人关注的重要研究课题。第3页/共173页4第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.1 MOCVD技术的一般特点MOCVD通常可以写成如下反应:族元素烷基(或烃基)化合物 族元素氢化物
4、族化合物气体碳化物生成的族化合物可以淀积在半导体衬底材料上,也可以淀积在绝缘氧化物衬底上。MOCVD的主要优点是:装置相对简单、操作容易,淀积温度低,因而可以降低杂质沾污及减少晶体缺陷;反应过程中无卤素原子,因而避免了由卤素原子引起的腐蚀等严重问题;可以在不同衬底材料上进行同质及异质外延;淀积面积大、质量好,可控杂质浓度可低至1016cm-3,因而可降低成本、提高生产率。第4页/共173页5第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.1 MOCVD技术的一般特点表81列出了目前常用的半导体薄膜制备方法,并列出了各自的优缺点及应用限制。从表中可以看
5、出,MOCVD和ClCVD是化学方法,而LPE和MBE则属于物理方法。方法工艺性质优点问题及限制MOCVD化学成本低、产量高、操作容易、适用于同质外延和异质外延源材料易燃、易爆、剧毒;安全条件要求高Cl-CVD化学表面质量高适用于FET器件卤化物沾污,不能用于含铝材料,生产率低LPE物理晶体完整性高,适用于DH及FET器件,生产能力较强不能用于绝缘衬底,表面质量差,成批生产不连续MBE物理高精度、高表面质量生产率非常低,目前仅限于实验室使用第5页/共173页6第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.1 MOCVD技术的一般特点 图81给出了G
6、aAs材料的MOCVD系统示意图。可见MOCVD系统有以下几个主要组成部分:第6页/共173页7第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.1 MOCVD技术的一般特点(1)加热装置 通常由射频感应加热,加热用的石墨基座外面包覆SiC,基座下面有支撑杆,以便使基座转动。(2)反应器 反应器由气炼石英管制作,可以是卧式的,也可以是立式的。图82示出几种反应器的设计。(3)进气系统 由质量流量计控制各种气体流量,因为各种源均用高纯氢气作载气,因此必须配备氢气净化装置(如钯扩散管)。除了原料气体以外,还有掺杂源,以便在生长过程中掺杂。(4)冷阱及安全装
7、置 由于金属有机物剧毒、易爆,且有较高的蒸汽压,因此应该存放于特制的密闭冷阱中,并有泄漏监视及温度控制传感装置,以保证操作时的安全。第7页/共173页8第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.1 MOCVD技术的一般特点图82各种形状反应器的设计:a-垂直式,b-水平式,c-桶式,d-扁平式第8页/共173页9第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.1 MOCVD技术的一般特点图83低压MOCVD生长系统示意图MOCVD可以常压操作或减压操作。图83是一个低压装置的示意图。它与常压装置的主要
8、区别是可以省去载气。由于在低压气氛中生长,膜的质量较好,粘结性也较好,特别对于表面是非平面结构的衬底,也能生长较均匀的薄膜。低压系统的这些优点是由于气体分子在减压的条件下碰撞次数减少,平均自由程增加,因而有很大的扩散性。第9页/共173页10第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.2 MOCVD生长过程及参数控制在MOCVD技术中,影响质量的参数主要有生长温度、气流速度及气流方式,衬底表面处源材料纯度及掺杂控制等。1.温度温度由三甲基镓和砷烷为源,在尖晶石衬底上生长(111)GaAs膜的实验表明,最佳生长温度与衬底取向有很大关系。在50080
9、0范围内,由实验得到的一般规律是:低于600时,膜是多晶;在高于800时,反应器内的气流变为湍流,得到的膜有很高的缺陷密度;在所限定的温度范围内,对于(111)衬底,最合适的生长温度为680720;对(110)衬底,最合适的生长温度为630700。用蓝宝石作为衬底,也观察到类似的规律,在800生长的GaAs膜不如675时的质量好。第10页/共173页11第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.2 MOCVD生长过程及参数控制对于尖晶石和蓝宝石两种衬底生长速率和温度关系的研究表明,这两种生长系统中生长速率在相当宽的温度范围内基本上是常数。这时膜
10、的质量和生长速率主要与气流量、气流方式有关。在特定的设备中,即当气流方式不变的情况下,某个特定的材料体系的最佳气流量可由实验来确定。一般来说,当气流量大于最佳值时,衬底中心部分的淀积速率较大,而当气流量小于最佳值时,淀积容易在衬底周边发生。2.流量和流速流量和流速由三甲基镓和砷烷为源,在尖晶石衬底上生长(111)GaAs膜的实验表明,当膜在过量的AsH3(进入反应器的AsH3流量是(CH3)3Ga的10倍)条件下生长时,淀积速率随三甲基镓的浓度线性增加。第11页/共173页12第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.2 MOCVD生长过程及参
11、数控制源气体的最佳配比对生长高质量的膜非常重要。实验发现,尖晶石上淀积的GaAs外延层的电学性质与气流中的砷烷和三甲基镓的比例有很大关系。对于一定的生长温度,n型膜的载流子浓度在三甲基镓流速不变时与砷烷流速有关:较高的砷烷流速条件下得到的膜,其载流子浓度在某个特定值时趋于饱和,而在砷烷气流减小时,净的施主浓度也趋于减小。在继续减小砷烷流速的情况下,膜将最终变成p型。起p型导电作用的受主态可能与膜中的缺陷(砷空位)有关。在生长过程中改变源气的气流比例可以在外延膜中制造p-n结。第12页/共173页13第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.2
12、MOCVD生长过程及参数控制3.源的纯度源的纯度在MOCVD技术中,源的纯度非常重要。可以说,膜的电学性质在相当大程度上由源的纯度决定。市场上可以买到高纯的砷烷。其纯度可由预先用氯化镓与砷烷为源同质外延得到的GaAs膜的电学测量来估计。三甲基镓的质量尚无法预先估计。发射光谱分析证明,三甲基镓中含有Cu、Fe、Zn、Al、Si、Mg等诸多杂质,其重量比可高达107104。这些杂质可以引起GaAs膜的非故意掺杂。红外光谱分析证明,在三甲基镓中还存在不等量的碳氢化合物。到目前为止,三甲基镓的纯度一般是由外延生长膜的电学测量来评估的。不纯的镓源生长的GaAs膜表观上有很高的电阻率(大于103Wcm),
13、而且与膜的厚度无关,有时还能得到多晶膜。第13页/共173页14第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.3 对于源的讨论鉴于源材料对于MOCVD技术的重要性,下面就源的组成问题进行一些讨论。MOCVD技术所用的源材料是路易斯酸(电子接受体)和路易斯碱(电子给予体)及所生成的加合物作为反应产物的母体,即:路易斯酸(电子接受体)路易斯碱(电子给予体)加合物例如:MR3+XR3=MR3XR3 加合物中各化学键的强度由R、R、M及X的性质决定。在加合物形成后,可以有以下几种方式生成产物MX(下列各式中,括号内是可替代成分):(1)由多组分原位生成:M
14、R3+XR3=MXR3R3例如:GaMe3+P(As)H3=GaP(As)+3MeH (Me=CH3,甲基)第14页/共173页15第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.3 对于源的讨论(2)由单一源生成:MR3(R2X)XR3=MX+R3R3(RX+2RR)例如:GaEt2ClAsEt3=GaAs+EtCl+2EtEt(Et=C2H5,乙基)(3)由取代反应生成:MR3XR3+XR3=MX+XR3+R3R3例如:InMe3PEt3+P(As)H3=InP(As)+PEt3+3MeH第15页/共173页16第8 8章 微电子工程前沿课题 8
15、.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.3 对于源的讨论几乎所有的族、族、族化合物的MOCVD都可归于上述几种类型的一种。在由多组分原位反应生成所需的化合物时,存在着生成高聚物的副反应:nMR3+nXR3=(MRXR)n+2nRR例如:nInMe3(Et3)+nPH3=(InMe(Et)PH)n+2nMe(Et)H生成的高聚物(MRXR)n妨碍了半导体化合物MX的生成。目前已找到一些解决这个问题的办法:(1)加入某种阻化剂,使高聚物不易生成,如在上述反应中加入Me3InPMe3、MeInPEt3、Me3InNEt3等一类物质可以阻止高聚物(InMe(Et)PH)n生成。(2)
16、在原料气混合之前使PH3裂解。(3)用低压汽相淀积(LPMOCVD)使高聚物分解。(4)在衬底附近设置辅助加热器使高聚物分解。第16页/共173页17第8 8章 微电子工程前沿课题 8.1 金属有机物化学汽相淀积(MOCVD)技术概况8.1.3 对于源的讨论总之,MOCVD技术在80年代中期已经在合成高纯的烷、烃基金属化合物及其加合物,解决淀积过程中的高聚物问题以及减少设备开关瞬态时间,从而使组分和掺杂都得到了精确控制等几个方面都取得了巨大进步,使MOCVD技术进入了一个趋于成熟并在电子材料制备中越来越显示出重大作用的新阶段。最后,关于MOCVD技术中的安全问题,主要有两个方面:一是所有金属有
17、机化合物及V族元素氢化物极毒,因此要求系统密闭及对废物严格处理;二是氢化物及金属有机化合物沸点低、易挥发、易燃、易爆。目前已在MOCVD系统上设计了很多传感器,并用电脑加以控制,有效地保证了操作中的安全。但值得提出的是这些装置并非越多越好,实际上是越多越容易出毛病。第17页/共173页18第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介分子束外延就是在超高真空系统中,用分子或原子束进行外延淀积的过程。在超高真空条件下,分子束束流密度低,束流分子之间以及束流分子与背景气体分子之间都没有明显的碰撞发生。分子束外延的特点如表82所示:(1)外延生长的蒸发源与衬底分开加热,可以分别
18、加以控制和调整;(2)生长速率极慢,约1埃/秒10埃/秒,可以利用快门精密地控制膜厚与成分;(3)生长温度低,可以避免生长过程中衬底或外延层中杂质的再扩散,也可避免高温热缺陷的产生,并可获得杂质分布非常陡峭的突变结;(4)外延生长不是在热平衡条件下进行的,是一个动力学过程,所以可以生长一般热平衡生长难以获得的晶体;(5)在生长过程中,生长面处于高真空中,可以进行就地分析,研究外延生长过程、外延层的组成及表面状态。第18页/共173页19第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介表82分子束外延的特点第19页/共173页20第8 8章 微电子工程前沿课题 8.2 分子束
19、外延(MBE)技术简介 外延生长系统是一个用不锈钢制成的超高真空工作室,它的极限真空度达11081109Pa。在外延生长时,仍需保持在107Pa以上。通常高真空机组由钛升华泵、液氮冷阱、溅射离子泵等组成(有时还需要分子泵和冷凝泵)。由于整个工作室要达到超高真空,工作室必须经过烘烤,所以要求整个工作室内部的附属机件能承受200250的高温。第20页/共173页21第8 8章 微电子工程前沿课题 图84是分子束外延装置的示意图。它由外延生长和监控系统两部分组成。图84分子束外延装置示意图第21页/共173页22第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介工作室内部直接用于外
20、延生长的部分是分子束的喷射室,控制束流的快门,可以加热的样品架等。图85是一个典型的喷射室结构。盛有蒸发物的加热池可用被高温热解的BN制成,它的化学稳定性好,释放出的吸附气体少。加热池中插有热电偶以控制炉温。温度一般控制在1误差之内。因为对象Ga、Al、P、As之类的蒸发源,当炉温每变化1时,分子束流将变化36,炉子系用螺旋式的钨丝加热,加热器外用钽箔做的屏蔽罩遮起来,以防止炉体热辐射。分子束经过一个准直孔喷入真空室内。喷射室的要求是:(1)尺寸小,(2)气体喷射率高,(3)热响应快,(4)辐射功率损耗低,(5)加热池受热均匀。第22页/共173页23第8 8章 微电子工程前沿课题 8.2 分
21、子束外延(MBE)技术简介图85喷射室结构示意图第23页/共173页24第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介为了生长各种多元化合物半导体,并满足不同的掺杂要求,这种喷射室往往有好几个。每个室均有相应的热电偶、快门及加热控制回路,为防止源之间的沾污,室之间还装有隔板。样品以镓片或铟片靠表面张力粘附在样品架上,可防止由应力引起的晶格缺陷。清洁衬底表面的工作,由生长室内的氩离子枪轰击来完成。监控部分一般包括四极质谱,俄歇电子能谱仪和低能电子衍射仪等。四极质谱仪是一种常用的分析气体成分的仪器,用以监视残留气体和分子束流成分。低能电子衍射仪可进行晶体表面结构的分析,若装有
22、扫描高能电子衍射仪还可以观察表面的光洁平整度。俄歇谱仪则用来监视表面成分,测定化学计量比,表面沾污等。电子计算机可以从四极质谱仪取得束流成分和强度的信、加热池温度信号。经数据处理后,自动调节温度和快门,以精确控制外延膜厚与成分,利用电子计算机进行闭环控制对于制备很薄的超晶格结构是十分必要的。第24页/共173页25第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介分子束外延过程分两个步骤,一是原料蒸发形成一定化学成分与束流密度的分子束;二是分子束在单晶衬底上淀积生长。对于元素半导体如锗、硅,蒸发过程比较简单,化合物半导体则比较复杂。例如对于一个二元化合物,组成它的化学元素分别
23、为M和X(设M为金属,X为非金属)。因为蒸发源处于热平衡状态,所以MX蒸发时挥发性的元素束流大得多,如用IIIV族化合物作V族元素的分子束是很合适的,因为这样能提供稳定的、正确的分子束通量。III族元素的分子束源,一般都用元素本身。将淀积过程看做是一级解吸过程,设表面寿命t、吸附原子浓度n和解吸率G有如G=n/t的关系。当一强度为J的分子束突然入射到衬底表面上,则n的改变率为取起始条件n(0)=0,并假定tf(n),则上述方程可以积分,由方程Gn/t可得G(t)=J(1-e-t/t)第25页/共173页26第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介同样道理,当束流突然
24、被快门截断时,解吸率将按e-t/t衰减。根据t的温度关系可以确定解吸的激活能Et=t0exp(E/RT)Ga在GaAs上的吸附和解吸符合上述规律,如图86a所示,该图示出两个温度下由(111)GaAs上Ga的矩形入射脉冲得到的解吸脉冲的形状。图86两个温度下(111)GaAs上Ga的矩形入射脉冲得到的解吸脉冲(a)和砷分子入射于GaAs衬底时的反射束流强度(b)第26页/共173页27第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介As2在GaAs上的解吸则不符合上述规律。如将砷的分子束流周期地以矩形脉冲方式加在GaAs衬底上,然后测量其反射束流的强度,得实验结果如图86b
25、所示。可以认为As2分子是以一种可动的、弱键合的状态被吸附的,当这些吸附的As2分子遇到成对的砷空位时,它们就能够离解,在升高温度时,As原子复合成As2分子,随即能吸附如其中*表示表面物质种类。由此可得粘附系数式中t是As2*的表面寿命,k是离解的速率常数。第27页/共173页28第8 8章 微电子工程前沿课题 8.2 分子束外延(MBE)技术简介实验结果说明,当入射砷时,衬底表面无Ga存在的情况下,砷的寿命是很短的,也就是说粘附系数接近于0。若在入射砷的束流之前,加入一镓的束流,此时砷的反射束流脉冲的上升时间显著变长,即砷的表面寿命t显著增加。实验表明,衬底温度在750K以下镓的分子束流不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微电子 工程学
限制150内