新课标人教A版高中数学必修2空间中直线与直线之间的位置关系课件.pptx





《新课标人教A版高中数学必修2空间中直线与直线之间的位置关系课件.pptx》由会员分享,可在线阅读,更多相关《新课标人教A版高中数学必修2空间中直线与直线之间的位置关系课件.pptx(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面内两条直线的位置关系平面内两条直线的位置关系相交直线相交直线相交直线相交直线(有一个公共点)(有一个公共点)abo平行直线平行直线平行直线平行直线(无公共点)(无公共点)ab复习引入复习引入第1页/共43页螺螺 母母abcdef新课探究新课探究观察下列图形,说说空间中两条直线的位置关系探究一第2页/共43页立交桥立交桥第3页/共43页思考:存在不存在一个平面同时过思考:存在不存在一个平面同时过上面两条直线?上面两条直线?第4页/共43页问题问题1:在平面几何中,两直线的位置在平面几何中,两直线的位置关系如何?关系如何?讲授新课讲授新课问题问题2:没有公共点的直线一定平行吗?没有公共点的直线
2、一定平行吗?问题问题3:没有公共点的两直线一定在同没有公共点的两直线一定在同一平面内吗?一平面内吗?abcd第5页/共43页1.异面直线的定义异面直线的定义:不同在不同在 任何任何 一个平面内的两条直线叫做一个平面内的两条直线叫做异面直线。异面直线。1)1)异面直线既不平行也不相交异面直线既不平行也不相交一、空间两条直线的位置关系一、空间两条直线的位置关系2)2)定义中定义中“任何任何”是指两条直是指两条直线永远不具备确定平面的条件,线永远不具备确定平面的条件,即是不可能找到一个平面同时即是不可能找到一个平面同时包含这两条直线;包含这两条直线;不能认为分别在两个平面内的不能认为分别在两个平面内
3、的两条直线叫异面直线。两条直线叫异面直线。第6页/共43页a与与b是是相交相交直线直线a与与b是是平行平行直线直线a与与b是是异面异面直线直线abM它们可能异面,可能相交,也可能平行。它们可能异面,可能相交,也可能平行。abab第7页/共43页它们可能异面,可能相交,也可能平行。也不能认为不在同一平面内的两条直线叫异面直线。第8页/共43页说明说明:画异面直线时画异面直线时,为了为了体现体现它们不共面的特点。它们不共面的特点。常借常借 助一个或两个平面来衬托助一个或两个平面来衬托.如图:如图:aabaAbb(1)(3)(2)3)异面直线的画法第9页/共43页4 4)异面直线的判定方法:)异面直
4、线的判定方法:不同在任何一个平面内。不同在任何一个平面内。既不相交也不平行的直线。连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。已知:如图已知:如图求证:直线求证:直线AB和和a是异面直线。是异面直线。BAa证明证明:(反证法反证法)假设直线假设直线AB和和a不是异面直线。不是异面直线。则直线则直线AB和和a一定共面,设为一定共面,设为(公理(公理2的推论的推论1)所以直线所以直线AB和和a是异面直线。是异面直线。这与已知这与已知A 矛盾,矛盾,第10页/共43页 按平面基本性质分同在一个平面内同在一个平面内相交直线平行直线 不同在任何一个平面内不同在任何一个平面内
5、:异面直线 有一个公共点有一个公共点:按公共点个数分相交直线无无 公公 共共 点点平行直线异面直线 2 2、空间中直线与直线之间的位置关系、空间中直线与直线之间的位置关系 第11页/共43页A1B1C1D1CBDA练习练习1、如图所示:正方体的棱所在的直线如图所示:正方体的棱所在的直线中,与直线中,与直线A1B异面的有哪些?异面的有哪些?第12页/共43页答案:答案:D1C1、C1C、CD、D1D、AD、B1C1A1B1C1D1CBDA练习练习1、如图所示:正方体的棱所在的直线如图所示:正方体的棱所在的直线中,与直线中,与直线A1B异面的有哪些?异面的有哪些?第13页/共43页第14页/共43
6、页下图长方体中下图长方体中平行平行相交相交异面异面BD和FH是直线EC和BH是直线BH和DC是直线BACDEFHG(2).与棱AB所在直线异面的棱共有条?4分别是分别是:CG、HD、GF、HE(1)说出以下各对线段的位置关系?练习练习3第15页/共43页1.画两个相交平面,在这两个平面内各画画两个相交平面,在这两个平面内各画一条直线,使它们成为:一条直线,使它们成为:平行直线;平行直线;相交直线;相交直线;异面直线异面直线.巩固:巩固:第16页/共43页1.画两个相交平面,在这两个平面内各画画两个相交平面,在这两个平面内各画一条直线,使它们成为:一条直线,使它们成为:平行直线;平行直线;相交直
7、线;相交直线;异面直线异面直线.ab 巩固:巩固:第17页/共43页1.画两个相交平面,在这两个平面内各画画两个相交平面,在这两个平面内各画一条直线,使它们成为:一条直线,使它们成为:平行直线;平行直线;相交直线;相交直线;异面直线异面直线.ab ab 巩固:巩固:第18页/共43页1.画两个相交平面,在这两个平面内各画画两个相交平面,在这两个平面内各画一条直线,使它们成为:一条直线,使它们成为:平行直线;平行直线;相交直线;相交直线;异面直线异面直线.ab ab ab 巩固:巩固:第19页/共43页2.两条异面直线指:两条异面直线指:A.空间中不相交的两条直线;空间中不相交的两条直线;B.不
8、在同一平面内的两条直线;不在同一平面内的两条直线;C.不同在任一平面内的两条直线;不同在任一平面内的两条直线;D.分别在两个不同平面内的两条直线;分别在两个不同平面内的两条直线;E.空间没有公共点的两条直线;空间没有公共点的两条直线;F.既不相交,又不平行的两条直线既不相交,又不平行的两条直线.巩固:巩固:()第20页/共43页填空:填空:1、空间两条不重合的直线的位置关系有、空间两条不重合的直线的位置关系有_、_、_三种。三种。2、没有公共点的两条直线可能是、没有公共点的两条直线可能是_直线,也有可能是直线,也有可能是 _直线。直线。3、和两条异面直线中的一条平行的直线与另一条的位置关系、和
9、两条异面直线中的一条平行的直线与另一条的位置关系 有有_。平行平行相交相交异面异面平行平行异面异面相交、异面相交、异面第21页/共43页练习提升练习提升“a,b是异面直线是异面直线”是指是指ab=,且且a不平行于不平行于b;a 平面平面,b 平面平面且且ab=a平面平面,b 平面平面不存在平面不存在平面,能使,能使a 且且b 成立成立1、上述结论中,正确的是()(A)(B)(C)(D)2、长方体的一条体对角线与长方体的棱所组成的异面直线有()(A)2对(B)3对(C)6对(D)12对CC第22页/共43页探究探究:HGCADBEFGHEF(B)(C)DA如图是一个正方体的展开图如图是一个正方体
10、的展开图,如果将它如果将它还原为正方体还原为正方体,那么那么AB,CD,EE,GH这四条线段所在直线是异面直线的有这四条线段所在直线是异面直线的有对对?答答:共有三对共有三对第23页/共43页abced我们知道我们知道,在同一平面内在同一平面内,如果两条直线都和第三条直线平行如果两条直线都和第三条直线平行,那么这两条直线互相平行那么这两条直线互相平行.在空间这一规律是否还成立呢在空间这一规律是否还成立呢?观察观察:将一张纸如图进行折叠将一张纸如图进行折叠,则各折痕及边则各折痕及边a,b,c,d,e,之间有何关系?之间有何关系?a b c d e 公理:公理:在空间平行于同一条直线的两条直线互相
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 标人教 高中数学 必修 空间 直线 之间 位置 关系 课件

限制150内