《高三数学重点知识点归纳总结精选5篇.docx》由会员分享,可在线阅读,更多相关《高三数学重点知识点归纳总结精选5篇.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学重点知识点归纳总结精选5篇 与高一高二不同之处在于,此时复习学问是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时须要进行查漏补缺,但也须要同时提升实力,填补学问、技能的空白。下面就是我给大家带来的高三数学学问点,希望能帮助到大家! 高三数学学问点1 一、充分条件和必要条件 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。 二、充分条件、必要条件的常用推断法 1.定义法:推断B是A的条件,事实上就是推断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义推断即可 2.转换法:当所给命题的充要条件不易推断时,
2、可对命题进行等价装换,例如改用其逆否命题进行推断。 3.集合法 在命题的条件和结论间的关系推断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: 若A⊆B,则p是q的充分条件。 若A⊇B,则p是q的必要条件。 若A=B,则p是q的充要条件。 若A⊈B,且B⊉A,则p是q的既不充分也不必要条件。 三、学问扩展 1.四种命题反映出命题之间的内在联系,要留意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为: (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题; (2)同时否定
3、命题的条件和结论,所得的新命题就是原来的否命题; (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这亲密的联系,故在推断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面推断较难时,可转化为应用该命题的逆否命题进行推断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。 高三数学学问点2 向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:a×b=|a|•|b|•sin
4、a,b;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: a×b是以a和b为边的平行四边形面积。 a×a=0。 ab=a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 高三数学学问点3
5、 基本领件的定义: 一次试验连同其中可能出现的每一个结果称为一个基本领件。 等可能基本领件: 若在一次试验中,每个基本领件发生的可能性都相同,则称这些基本领件为等可能基本领件。 古典概型: 假如一个随机试验满意:(1)试验中全部可能出现的基本领件只有有限个; (2)每个基本领件的发生都是等可能的; 那么,我们称这个随机试验的概率模型为古典概型. 古典概型的概率: 假如一次试验的等可能事务有n个,考试技巧,那么,每个等可能基本领件发生的概率都是;假如某个事务A包含了其中m个等可能基本领件,那么事务A发生的概率为。 古典概型解题步骤: (1)阅读题目,搜集信息; (2)推断是否是等可能事务,并用字
6、母表示事务; (3)求出基本领件总数n和事务A所包含的结果数m; (4)用公式求出概率并下结论。 求古典概型的概率的关键: 求古典概型的概率的关键是如何确定基本领件总数及事务A包含的基本领件的个数。 高三数学学问点4 一个推导 利用错位相减法推导等比数列的前n项和: Sn=a1+a1q+a1q2+…+a1qn-1, 同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn, 两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1). 两个防范 (1)由an+1=qan,q≠0并不能马上断言an为等比数列,还要验证a1≠0. (2
7、)在运用等比数列的前n项和公式时,必需留意对q=1与q≠1分类探讨,防止因忽视q=1这一特别情形导致解题失误. 三种方法 等比数列的推断方法有: (1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则an是等比数列. (2)中项公式法:在数列an中,an≠0且a=an·an+2(n∈N_),则数列an是等比数列. (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则an是等比数列. 注:前两种方法也可用来证明一个数列为等比数列
8、. 高三数学学问点5 等式的性质:不等式的性质可分为不等式基本性质和不等式运算性质两部分。 不等式基本性质有: (1)a>bb (2)a>b,b>ca>c(传递性) (3)a>ba+c>b+c(c∈R) (4)c>0时,a>bac>bc c<0时,a>bac 运算性质有: (1)a>b,c>da+c>b+d。 (2)a>b>0,c>d>0ac>bd。 (3)a>b>0an>bn(n∈N,n>1)。 (4)a>b>0>(n
9、∈N,n>1)。 应留意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。一般地,证明不等式就是从条件动身施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 关于不等式的性质的考察,主要有以下三类问题: (1)依据给定的不等式条件,利用不等式的性质,推断不等式能否成立。 (2)利用不等式的性质及实数的性质,函数性质,推断实数值的大小。 (3)利用不等式的性质,推断不等式变换中条件与结论间的充分或必要关系。 1.精选高三数学学问点归纳总结三篇 2.最全高三数学重点学问点总结三篇 3.最新高三数学重点学问点总结三篇 4.精选高三数学学问点总结归纳三篇 5.精选最新高三数学学问点总结三篇 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页
限制150内