《S域分析零极点.pptx》由会员分享,可在线阅读,更多相关《S域分析零极点.pptx(101页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、系统函数的定义系统零状态下,响应的拉氏变换与激励拉氏变换之比叫作系统函数,记作H(s).可以是电压传输比、电流传输比、转移阻抗、转移导纳、策动点阻抗或导纳第1页/共101页系统函数的极零点分布第2页/共101页5.1 由系统函数的极零点分布决定 时域特性(1)时域特性h(t)反变换第 i个极点决定总特性Ki与零点分布有关第3页/共101页(2)几种典型的极点分布(a)一阶极点在原点第4页/共101页(2)几种典型的极点分布(b)一阶极点在负实轴第5页/共101页(2)几种典型的极点分布(c)一阶极点在正实轴第6页/共101页(2)几种典型的极点分布(d)一阶共轭极点在虚轴上第7页/共101页(
2、2)几种典型的极点分布(e)共轭极点在虚轴上,原点有一零点第8页/共101页(2)几种典型的极点分布(f)共轭极点在左半平面第9页/共101页(2)几种典型的极点分布几种典型的极点分布(g)共轭极点在共轭极点在右半平面右半平面第10页/共101页(3)有二重极点分布(a)在原点有二重极点第11页/共101页(3)有二重极点分布有二重极点分布(b)在负实轴在负实轴上有上有二重极点二重极点第12页/共101页(3)有二重极点分布(c)在虚轴上有二重极点第13页/共101页(3)有二重极点分布(d)在左半平面有二重共轭极点第14页/共101页一阶极点第15页/共101页二重极点第16页/共101页极
3、点影响小结:极点落在左半平面 h(t)逞衰减趋势极点落在右半平面 h(t)逞增长趋势极点落在虚轴上只有一阶极点 h(t)等幅振荡,不能有重极点极点落在原点 h(t)等于 u(t)第17页/共101页(4)零点的影响零点移动到原点第18页/共101页(4)零点的影响零点的分布只影响时域函数的幅度和相移,不影响振荡频率幅度多了一个因子多了相移第19页/共101页结论H(s)的极点决定了自由响应的振荡频率,与激励无关自由响应的幅度和相位与H(s)和E(s)的零点有关,即零点影响 K i ,K k 系数E(s)的极点决定了强迫响应的振荡频率,与H(s)无关用H(s)只能研究零状态响应,H(s)中零极点
4、相消将使某固有频率丢失。第20页/共101页激励E(s)的极点影响激励E(s)的极点也可能是复数增幅,在稳定系统的作用下稳下来,或与系统某零点相抵消等幅,稳态衰减趋势,暂态第21页/共101页例:周期矩形脉冲输入下图电路,求其暂态和稳态响应。(1)求)求e(t)的拉氏变换的拉氏变换第22页/共101页(2)求系统函数)求系统函数H(s)(3)求系统完全响应的拉氏变换)求系统完全响应的拉氏变换暂态稳态第23页/共101页(5)求第一个周期引起的响应的拉氏变换V01(t)(4)求暂态响应,它在整个过程中是一样的。固定常数衰减因子第24页/共101页(7)求第一周期的稳态响应)求第一周期的稳态响应第
5、25页/共101页(8)整个周期矩形信号的稳态响应暂态响应稳态响应完全响应第26页/共101页5.2 由系统函数决定系统频率特性什么是系统频率响应?不同频率的正弦激励下系统的稳态响应一般为复数,可表示为下列两种形式:第27页/共101页由正弦激励的极点决定的稳态响应如系统是稳定的,该项最后衰减为零第28页/共101页稳态响应有关的幅度该变相位偏移第29页/共101页若 换成变量 系统频率特性幅频特性相位特性第30页/共101页用几何法求系统频率特性第31页/共101页例:已知 试求当时的幅频和相位第32页/共101页5.3 一阶系统和二阶非谐振系统的S平面分析已知该系统的H(s)的极零点在S平
6、面的分布,确定该系统的幅频特性和相频特性的渐近线第33页/共101页(1)一阶系统一零点,一在实轴一零点,一在实轴的极点的极点一在原点的零点,一在原点的零点,一在实轴的极点一在实轴的极点只有无穷远处的零只有无穷远处的零点一在实轴的极点点一在实轴的极点第34页/共101页例:求一高阶系统的频率特性+U1 +U2CRMN-1/RC第35页/共101页第36页/共101页例:求一阶低通滤波器的频率特性RC+U1_+U2_M没有零点第37页/共101页幅频特性相位特性第38页/共101页(2)二阶非谐振系统的S平面分析只考虑单极点使系统逞低通特性只考虑一极点和一零点使系统逞高通特性中间状态是个常数低通
7、高通总体是个带通第39页/共101页例:第40页/共101页高通低通第41页/共101页 较小时较小时 起作用起作用 逐渐增加高通第42页/共101页 较大时较大时 起主要作用起主要作用低通特性 逐渐增加第43页/共101页带通第44页/共101页例:若已知H(s)零极点分布如图(a)-(h)试粗略给出它们的第45页/共101页第46页/共101页第47页/共101页5.4 5.4 二阶谐振系统的二阶谐振系统的S S域分析域分析谐振频率衰减阻尼因子频率变化影响高品质因素第48页/共101页(一)谐振频率(一)谐振频率衰减因素 谐振频率 第49页/共101页(二二)阻尼衰减因子阻尼衰减因子 的影
8、响的影响若 不变,则共轭极点总是落在以原点为圆心,以 为半径的左半圆弧上等幅震荡衰减震荡第50页/共101页 临界不起振实数根本不起振第51页/共101页(三)频率变化影响(三)频率变化影响当频率变化时 在S平面沿着虚轴移动,将 代入Z(s),则为系统频率特性,幅度、相位均沿 变化。第52页/共101页讨论讨论 的前提下,的前提下,不变不变 而而 变化的情况变化的情况第53页/共101页第54页/共101页斜边乘高直 角边之积第55页/共101页 显著增长,而 增长缓慢些第56页/共101页(四四)高品质因素的影响高品质因素的影响品质因素定义为 包括了 两方面的影响 高,若谐振频率一定,则 小
9、,损耗小,容易震荡,频率特性尖锐 低,则相反第57页/共101页例如:当例如:当 时的情况时的情况 当 在 附近时第58页/共101页第59页/共101页边带带宽 高带窄第60页/共101页例如:高阶系统(极零点靠近虚轴)例如:高阶系统(极零点靠近虚轴)无损电路,即 很小第61页/共101页第62页/共101页有非常靠近虚轴的零极点第63页/共101页5.5 5.5 全通网络和最小相移网络全通网络和最小相移网络第64页/共101页系统位于极点左半平面,零点位于右半平面,且零点极点对于 轴互为镜象对称则,这种系统函数成为全通函数,此系统成为全通系统,或全通网络。全通,即幅频特性为常数相移肯定不是
10、零第65页/共101页全通网络的零极点分布全通网络的零极点分布从对称零点极点之和为180度逐渐减少最后为-360度第66页/共101页第67页/共101页例:一些对称性强的网络可能是全通网络一些对称性强的网络可能是全通网络第68页/共101页最小相移网络最小相移网络零点位于右半平面,矢量夹角的绝对值较大零点为于左半平面,矢量夹角的绝对值较小定义:零点仅位于左半平面或虚轴上的网络函数称为“最小相移网络”非最小相移网络可以看成最小相移网络和全通网络的极联第69页/共101页相互抵消乘第70页/共101页5.6 5.6 系统稳定性系统稳定性一个稳定系统对于有界激励信号产生有界的响应函数稳定性是系统自
11、身的性质之一,系统是否稳定与激励情况无关系统冲激响应和系统函数能表征系统的稳定性第71页/共101页稳定性的三种情况稳定性的三种情况稳定系统:H(s)全部极点落在左半平面(除虚轴外)不稳定系统:H(s)有极点在右半平面,或虚轴有二阶以上重极点,不收敛。边界稳定系统:H(s)有一阶极点,等幅震荡第72页/共101页稳定系统对零极点的要求稳定系统对零极点的要求 在右半平面不能有极点,全在左半面 在虚轴上只能有一阶极点 分子方次最多比分母方次高一次,即:转移函数 策动点函数 中分母的 的因子只能是 的形式,其中 都是正值,乘得的系数也是正值。第73页/共101页 从最高次幂到最低次幂无缺项,b 0
12、可以为零。要么全部缺偶次项要么全部缺奇次项 的性质也使用于第74页/共101页2.罗斯罗斯-霍尔维兹准则霍尔维兹准则设n阶线性连续系统的系统函数为 式中,mn,ai(i=0,1,2,n)、bj(j=0,1,2,m)是实常数。H(s)的分母多项式为 第75页/共101页 H(s)的极点就是A(s)=0的根。若A(s)=0的根全部在左半平面,则A(s)称为霍尔维兹多项式。A(s)为霍尔维兹多项式的必要条件是:A(s)的各项系数ai都不等于零,并且ai全为正实数或全为负实数。若ai全为负实数,可把负号归于H(s)的分子B(s),因而该条件又可表示为ai0。显然,若A(s)为霍尔维兹多项式,则系统是稳
13、定系统。罗斯和霍尔维兹提出了判断多项式为霍尔维兹多项式的准则,称为罗罗斯斯-霍霍尔尔维维兹兹准准则则(R-H准准则则)。罗斯-霍尔维兹准则包括两部分,一部分是罗斯阵列,一部分是罗斯判据(罗斯准则)。第76页/共101页 罗斯和霍尔维兹提出了判断多项式为霍尔维兹多项式的准则,称为罗罗斯斯-霍霍尔尔维维兹兹准准则则(R-H准则)。罗斯-霍尔维兹准则包括两部分,一部分是罗斯阵列,一部分是罗斯判据(罗斯准则)。第77页/共101页 若n为偶数,则第二行最后一列元素用零补上。罗斯阵列共有n+1行(以后各行均为零),第三行及以后各行的元素按以下规则计算:第78页/共101页 罗罗斯斯判判据据(罗罗斯斯准准
14、则则)指出:多项式A(s)是霍尔维兹多项式的充分和必要条件是罗斯阵列中第一列元素全为正值。若第一列元素的值不是全为正值,则表明A(s)=0在右半平面有根,元素值的符号改变的次数(从正值到负值或从负值到正值的次数)等于A(s)=0在右半平面根的数目。根据罗斯准则和霍尔维兹多项式的定义,若罗斯阵列第一列元素值的符号相同(全为正值),则H(s)的极点全部在左半平面,因而系统是稳定系统。若罗斯阵列第一列元素值的符号不完全相同,则系统是不稳定系统。第79页/共101页 综上所述,根据H(s)判断线性连续系统的方法是:首先根据霍尔维兹多项式的必要条件检查A(s)的系数ai(i=0,1,2,n)。若ai中有
15、缺项(至少一项为零),或者ai的符号不完全相同,则A(s)不是霍尔维兹多项式,故系统不是稳定系统。若A(s)的系数ai无缺项并且符号相同,则A(s)满足霍尔维兹多项式的必要条件,然后进一步再利用罗斯-霍尔维兹准则判断系统是否稳定。第80页/共101页 已知三个线性连续系统的系统函数分别为 判断三个系统是否为稳定系统。第81页/共101页 解解 H1(s)的分母多项式的系数a1=0,H2(s)分母多项式的系数符号不完全相同,所以H1(s)和H2(s)对应的系统为不稳定系统。H3(s)的分母多项式无缺项且系数全为正值,因此,进一步用R-H准则判断。H3(s)的分母为 A3(s)的系数组成的罗斯阵列
16、的行数为n+1=4,罗斯阵列为 第82页/共101页根据式(4.8-20)和式(4.8-21),得 因为A3(s)系数的罗斯阵列第一列元素全大于零,所以根据R-H准则,H3(s)对应的系统为稳定系统。第83页/共101页 图 4.8-4 所示为线性连续系统的S域方框图表示。图中,H1(s)为 图图 4.8-4 例例 4.8-3 图图 K取何值时系统为稳定系统。第84页/共101页解解 令加法器的输出为X(s),则有 由上式得 第85页/共101页根据H(s)的分母构成罗斯阵列,得 第86页/共101页由式(4.8-20)和式(4.8-21)计算阵列的未知元素,得到阵列为 根据R-H准则,若 和
17、-K0,则系统稳定。根据以上条件,当K0时系统为稳定系统。第87页/共101页4.8.5 拉普拉斯变换与傅里叶变换拉普拉斯变换与傅里叶变换 若f(t)为因果信号,则f(t)的傅里叶变换F(j)和单边拉普拉斯变换F(s)分别为 由于s=+j,因此,若能使=Res等于零,则F(s)就等于F(j)。但是,能否使等于零,这取决于F(s)的收敛域。F(s)的收敛域为Res0,0为实数,称为收收敛敛坐坐标标。0可能小于零,可能等于零,也可能大于零。第88页/共101页 1.00 如果00,则F(s)的收敛域包含j轴(虚轴),F(s)在j轴上收敛。若令=0,即令s=j,则F(s)存在。这时,f(t)的傅里叶
18、变换存在,并且令s=j,则F(s)等于F(j)。即 例如,其单边拉普拉斯变换为 的傅里叶变换为第89页/共101页2.0=0 若收敛坐标0=0,F(s)的收敛域为Res0,F(s)的收敛域不包含j轴,故F(s)在j轴上不收敛。若令s=j,则F(s)不等于F(j)。和虚轴上都有极点,并且虚轴上的极点为m个一阶极点ji(i=1,2,m)。将F(s)展开为部分分式,表示为 式中,FN(s)表示左半平面极点对应的分式。令FN(s)的原函数为fN(t),则F(s)的原函数为 第90页/共101页 的傅里叶变换为由于 是 的原函数,并且 的极点在左半面,故第91页/共101页根据傅里叶变换的线性性质和频移
19、性质,并且由于(t)的傅里叶变换为,因此得 第92页/共101页 3.00 若00,则F(s)的收敛域也不包含j轴,收敛域的边界在右半平面内。因此,不能用式(4.8-24)得到F(j)。例如,f(t)=e2t(t),F(s)=,F(s)的收敛域为Res2,f(t)的傅里叶变换不存在。第93页/共101页 已知f(t)=e-2tcos t(t)的单边拉氏变换为 求求 傅里叶变换解解 F(S)的收敛坐标 ,即 。因此第94页/共101页另一方面,根据傅里叶变换的调制定理,由于所以有第95页/共101页 已知f(t)=(1-e-t)(t)的单边拉氏变换为 求求 傅里叶变换解解第96页/共101页稳定性分析的应用举例稳定性分析的应用举例放大器或反馈系统是否产生自激?震荡器是否能起振?是否对某些信号有选频作用?第97页/共101页例:已知 求:(1)(2)A满足什么条件能使系统稳定?解:必须满足:此时系统稳定。第98页/共101页例:已知有系统阻抗为 系统的放大倍数反馈系数为 F,为常数求:产生自激震荡的条件?解:产生自激震荡的条件是实部为零实部为零等幅震荡稳定不稳定第99页/共101页本节作业本节作业5-15,5-17,5-18,5-25,5-19*,5-20*,5-24*,5-26*,第100页/共101页感谢您的观看!第101页/共101页
限制150内