粒子群算法简介优缺点及其应用.pptx
《粒子群算法简介优缺点及其应用.pptx》由会员分享,可在线阅读,更多相关《粒子群算法简介优缺点及其应用.pptx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023/3/201粒子群算法的研究背景粒子群算法(Particle Swarm Optimization,简称PSO),是一种基于群体智能的进化计算方法。PSO由Kennedy和Eberhart博士于1995年提出。粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟
2、分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。第1页/共29页2023/3/202PSO的基本概念源于对鸟群捕食行为的研究:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有鸟都不知道食物在哪里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。粒子群算法的基本原理第2页/共29页2023/3/203PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。在PSO中,把一个优化问题看作是在空中觅食的鸟群,那么“食物”就是优化问题的最优解,而在空中飞行的每一只觅食的“鸟”就是PSO算法中在解
3、空间中进行搜索的一个“粒子”(Particle)。“群”(Swarm)的概念来自于人工生命,满足人工生命的五个基本原则。因此PSO算法也可看作是对简化了的社会模型的模拟,这其中最重要的是社会群体中的信息共享机制,这是推动算法的主要机制。第3页/共29页2023/3/204粒子在搜索空间中以一定的速度飞行,这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整。所有的粒子都有一个被目标函数决定的适应值(fitness value),这个适应值用于评价粒子的“好坏”程度。每个粒子知道自己到目前为止发现的最好位置(particle best,记为pbest)和当前的位置,pbest就是粒子本身找到的
4、最优解,这个可以看作是粒子自己的飞行经验。除此之外,每个粒子还知道到目前为止整个群体中所有粒子发现的最好位置(global best,记为gbest),gbest是在pbest中的最好值,即是全局最优解,这个可以看作是整个群体的经验。第4页/共29页2023/3/205每个粒子使用下列信息改变自己的当前位置:(1)当前位置;(2)当前速度;(3)当前位置与自己最好位置之间的距离;(4)当前位置与群体最好位置之间的距离。第5页/共29页2023/3/206用随机解初始化一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值”来更新自己:一个是粒子本身所找到的最好解,即个体极
5、值(pbest),另一个极值是整个粒子群中所有粒子在历代搜索过程中所达到的最优解(gbest)即全局极值。找到这两个最好解后,接下来是PSO中最重要的“加速”过程,每个粒子不断地改变其在解空间中的速度,以尽可能地朝pbest和gbest所指向的区域“飞”去。粒子群算法的基本思想第6页/共29页2023/3/207假设在一个N维空间进行搜索,粒子i的信息可用两个N维向量来表示:第i个粒子的位置可表示为 速度为 在找到两个最优解后,粒子即可根据下式来更新自己的速度和位置:粒子群优化算法的一般数学模型 :是粒子i在第k次迭代中第d维的速度;:是粒子i在第k次迭代中第d维的当前位置;(1)(2)第7页
6、/共29页2023/3/208i=1,2,3,M:种群大小。c1和c2:学习因子,或称加速系数,合适的c1和c2既可加快收敛又不易陷入局部最优。rand1和rand2:是介于0,1之间的随机数。是粒子i在第d维的个体极值点的位置;是整个种群在第d维的全局极值点的位置。最大速度vmax:决定了问题空间搜索的力度,粒子的每一维速度vid都会被限制在vdmax,+vdmax 之间,假设搜索空间的第d维定义为区间xdmax,+xdmax ,则通常vdmax=kxdmax,0.1k1.0,每一维都用相同的设置方法。第8页/共29页2023/3/209公式(1)主要通过三部分来计算粒子i更新的速度:粒子i
7、前一时刻的速度 ;粒子当前位置与自己历史最好位置之间的距离 ;粒子当前位置与群体最好位置之间的距离 。粒子通过公式(2)计算新位置的坐标。更新公式的意义第9页/共29页2023/3/2010 式(1)的第一部分称为动量部分,表示粒子对当前自身运动状态的信任,为粒子提供了一个必要动量,使其依据自身速度进行惯性运动;第二部分称为个体认知部分,代表了粒子自身的思考行为,鼓励粒子飞向自身曾经发现的最优位置;第三部分称为社会认知部分,表示粒子间的信息共享与合作,它引导粒子飞向粒子群中的最优位置。公式(1)的第一项对应多样化(diversification)的特点,第二项、第三项对应于搜索过程的集中化(i
8、ntensification)特点,这三项之间的相互平衡和制约决定了算法的主要性能。第10页/共29页2023/3/2011参数意义(1)粒子的长度N:问题解空间的维数。(2)粒子种群大小M:粒子种群大小的选择视具体问题而定,但是一般设置粒子数为20-50。对于大部分的问题10个粒子已经可以取得很好的结果,不过对于比较难的问题或者特定类型的问题,粒子的数量可以取到100或200。另外,粒子数目越多,算法搜索的空间范围就越大,也就更容易发现全局最优解。当然,算法运行的时间也较长。(3)加速常数c1和 c2:分别调节向Pbest和Gbest方向飞行的最大步长,决定粒子个体经验和群体经验对粒子运行轨
9、迹的影响,反映粒子群之间的信息交流。如果c1=0,则粒子只有群体经验,它的收敛速度较快,但容易陷入局部最优;第11页/共29页2023/3/2012如果c2=0,则粒子没有群体共享信息,一个规模为M的群体等价于运行了M个各行其是的粒子,得到解的几率非常小,因此一般设置c1=c2。这样,个体经验和群体经验就有了相同重要的影响力,使得最后的最优解更精确。改变这些常数会改变系统的“张力”,较低的c1 和 c2值使得粒子徘徊在远离目标的区域,较高的c1 和 c2值产生陡峭的运动或越过目标区域。Shi和Eberhart建议,为了平衡随机因素的作用,一般情况下设置c1 c2,大部分算法都采用这个建议。第1
10、2页/共29页2023/3/2013(4)粒子的最大速度vmax:粒子的速度在空间中的每一维上都有一个最大速度限制值vdmax,用来对粒子的速度进行钳制,使速度控制在范围vdmax,vdmax 内,这决定问题空间搜索的力度,该值一般由用户自己设定。vmax是一个非常重要的参数,如果该值太大,则粒子们也许会飞过优秀区域;另一方面如果该值太小,则粒子们可能无法对局部最优区域以外的区域进行充分的探测。实际上,它们可能会陷入局部最优,而无法移动足够远的距离跳出局部最优达到空间中更佳的位置。(5)rand1和rand2是介于0,1之间的随机数,增加了粒子飞行的随机性。(6)迭代终止条件:一般设为最大迭代
11、次数Tmax、计算精度或最优解的最大停滞步数t。第13页/共29页2023/3/2014算法流程第14页/共29页2023/3/2015程序伪代码For each particleInitialize particleEndDoFor each particleCalculate fitness valueIf the fitness value is better than the best fitness value(pbest)in historyset current value as the new pbest EndChoose the particle with the best
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 粒子 算法 简介 优缺点 及其 应用
限制150内