2017年高考真题——文科数学(全国Ⅲ卷)(含答案).docx





《2017年高考真题——文科数学(全国Ⅲ卷)(含答案).docx》由会员分享,可在线阅读,更多相关《2017年高考真题——文科数学(全国Ⅲ卷)(含答案).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密启用前【试卷点评】【命题特点】2017年新课标III高考数学试卷,试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考查。在保持稳定的基础上,进行适度的改革和创新。2017年的数学试卷“以稳为主”试卷结构平稳,同时题目平和、无偏怪题,难度控制理想。“稳中求进”试卷考查的具体知识点有变化。 1、回归教材,注重基础 2017 年新课标III卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分考点,选择题、填空题考查了复数、三角函数、折线图、概率、解析几何、向量、框图、线性规划等考点,大部分属于常规题型,是学生在平时训练中常见的类型。同时,在立体几何、导
2、数等题目上进行了一些微创新,与实际相联系,这些题目的设计回归教材和中学教学实际。 2、适当设置题目难度与区分度 与往年课标III卷相对比,今年的难度设置在最后21题。尤其以选择题第 12 题和填空题第 16道,只要能认真分析,解决此问题的是不成问题。 3、布局合理,考查全面,着重数学方法和数学思想的考察 在解答题部分,对高中数学中的重点内容时行了考查。包括三角函数、立体几何、概率统计、解析几何、导数五大版块和二选一问题。以知识为载体,立意于能力,让数学方法和数学思统方式贯穿于整个试题的解答过程之中。 4、命题考察的沿续性 2017 年新课标III卷,在力求创新基础上,也有一些不变的东西。例如
3、2017 年新课标 III 卷在集合、复数、算法、线性规划的命题方式基本完全一致。【试卷解析】一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合A=1,2,3,4,B=2,4,6,8,则中元素的个数为( )A1B2C3D4【答案】B【解析】由题意可得: ,中元素的个数为2,所以选B.【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常
4、用的数形结合形式有数轴、坐标系和Venn图2复平面内表示复数的点位于( )A第一象限B第二象限C第三象限D第四象限【答案】C【解析】由题意:,在第三象限. 所以选C.【考点】复数运算【名师点睛】首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A月接待游客逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在7,8
5、月D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有1.频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据4已知,则=( )A BC D【答案】A【解析】 .所以选A.【考点】二倍角正弦公式【名师点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,
6、其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.5设x,y满足约束条件,则的取值范围是( )A3,0B3,2C0,2 D0,3【答案】B【考点】线性规划【名师点睛】点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标
7、函数的最大或最小值会在可行域的端点或边界上取得.6函数的最大值为( )A B1C D 【答案】A所以选A.【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征7函数的部分图像大致为( ) A B D C D【答案】D【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实
8、现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系8执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )A5B4C3D2【答案】D【解析】若,第一次进入循环,成立,成立,第二次进入循环,此时,不成立,所以输出成立,所以输入的正整数的最小值是2,故选D. 【考点】循环结构流程图【名师点睛】算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9已知圆柱的高为1,它的
9、两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )ABC D【答案】B【解析】如果,画出圆柱的轴截面,所以,那么圆柱的体积是,故选B.【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.10在正方体中,E为棱CD的中点,则( )ABCD【答案】C【考点】线线位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)
10、证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.11已知椭圆C:,(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为( )A B CD【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12已知函数有唯一零点,则a=( )ABCD1【答案】C【解析】,设,当时,当时,函数单调递减,当时,函数单调递增,当时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 年高 考真题 文科 数学 全国 答案

限制150内