2008年上海高考数学真题(理科)试卷(含答案).docx
《2008年上海高考数学真题(理科)试卷(含答案).docx》由会员分享,可在线阅读,更多相关《2008年上海高考数学真题(理科)试卷(含答案).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密启用前 2008年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题. 得 分评 卷 人一. 填空题(本大题满分44分)本大题共有11题,只要求直接 填写结果,每个空格填对得4分,否则一律得零分1不等式的解集是 .2若集合
2、、满足,则实数=_.3若复数满足(是虚数单位),则=_.4若函数的反函数为(),则 .5若向量、满足,且与的夹角为,则=_.6函数的最大值是 .7在平面直角坐标系中,从六个点:、 中任取三个,这三点能构成三角形的概率是 (结果用分数表示).8设函数是定义在上的奇函数. 若当时,则满足的的取值范围是 .9已知总体的各个体的值由小到大依次为2,3,3,7,12,13.7,18.3,20,且 总体的中位数为. 若要使该总体的方差最小,则的取值分别是 .10某海域内有一孤岛. 岛四周的海平面(视为平面)上有一浅水区(含边界),其边界 是长轴长为、短轴长为的椭圆. 已知岛上甲、乙导航灯的海拔高度分别为
3、,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上. 现有船只经过该海 域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为,那么 船只已进入该浅水区的判别条件是 .11方程的解可视为函数的图像与函数的图像交点的横坐标. 若方程的各个实根所对应的点()(=)均在直线的同侧,则实数的取值范围是 . 得 分评 卷 人二. 选择题(本大题满分16分)本大题共有4 题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分12. 组合数恒等于 答 (
4、) (A) . (B) . (C) . (D) .13. 给定空间中的直线及平面. 条件“直线与平面内无数条直线都垂直”是“直线与平面垂直”的 答 ( ) (A) 充要条件. (B) 充分非必要条件. (C) 必要非充分条件. (D) 既非充分又非必要条件.14. 若数列是首项为1,公比为的无穷等比数列,且各项的和为,则 的值是 答 ( ) (A) 1. (B) 2. (C) . (D) .15. 如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),是该 圆的四等分点. 若点、点满足且, 则称优于. 如果中的点满足:不存在中的其它点优 于,那么所
5、有这样的点组成的集合是劣弧 答 ( )(A) . (B) . (C) . (D) .三. 解答题(本大题满分90分)本大题共有6题,解答下列各题必须写出必要的步骤 得 分评 卷 人16.(本题满分12分) 如图,在棱长为 2 的正方体中,的中点. 求直线与平面所成角的大小(结果用反三角函数值表示). 解 得 分评 卷 人17.(本题满分13分)如图,某住宅小区的平面图呈圆心角为的扇形. 小区的两个出入口设置在点及点处,且小区里有一条平行于的小路. 已知某人从沿走到用了10分钟,从沿走到用了6分钟. 若此人步行的速度为每分钟50米,求该扇形的半径的长(精确到1米). 解 得 分评 卷 人18.(
6、本题满分15分)本题共有2个小题,第1小题满分6分,第 2小题满分9分 已知双曲线,是上的任意点. (1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数; (2)设点的坐标为,求的最小值.证明(1) 解(2) 得 分评 卷 人19.(本题满分16分)本题共有2个小题,第1小题满分8分,第2 小题满分8分 已知函数. (1)若,求的值; (2)若对于恒成立,求实数的取值范围. 解(1) (2) 得 分评 卷 人20.(本题满分16分)本题共有3个小题,第1小题满分3分,第2 小题满分5分,第3小题满分8分 设是平面直角坐标系中的点,是经过原点与点的直线.记是直线与抛物线的异于原点的交点. (
7、1)已知. 求点的坐标; (2)已知点在椭圆上,. 求证:点落在双曲线上; (3)已知动点满足,. 若点始终落在一条关于轴对称的抛物线上,试问动点的轨迹落在哪种二次曲线上,并说明理由. 解(1) 证明(2) 解(3) 得 分评 卷 人21.(本题满分18分)本题共有3个小题,第1小题满分3分,第 2小题满分7分,第3小题满分8分 已知以为首项的数列满足: (1)当,时,求数列的通项公式; (2)当,时,试用表示数列前100项的和; (3)当 (是正整数),正整数时,求证:数列,,成等比数列当且仅当. 解(1)(2)证明(3)2 0 0 8 年 全 国 普 通 高 等 学 校 招 生 统 一 考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2008 上海 高考 数学 理科 试卷 答案
限制150内