图像分割方法的分类.docx
《图像分割方法的分类.docx》由会员分享,可在线阅读,更多相关《图像分割方法的分类.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、图像分割方法的分类1) 基于阈值的分割方法阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值相比较,最后将像素据比较结果分到合适的类别中。因此,该类方法最为关键的一步就是按照某个准则函数来求解最佳灰度阈值。一般来说,阈值法较为适用于目标灰度值均匀的分布在背景灰度值之外的图像,但由于其忽略了图像中目标的空间结构信息,因此对于背景较为复杂的图像则分割效果不佳。比较常用的阂值法有大律法(Otsu,1978)、最小误差法(Kittler,1986)、最大熵法(Kaput,1985)等。2)基于边缘的分割方法基于边缘的分割方法指的是基于灰度值的边缘检测,它是建
2、立在边缘灰度值会呈现出阶跃型或屋顶型变化这一观测基础上的方法。但该类方法最大的缺点是对噪声较为敏感,即使噪声的幅值很小,但当其频率较大时,噪声的一阶和二阶导数的幅值也会比较大,从而会产生错误的检测结果,因此很多情况下需要结合滤波器进行使用。较为常见的微分算子包括Robert算子、Prewitt算子、Sobel算子、Laplaeian算子、Canny算子等(Sonka,2002)。3)基于区域的分割方法此类方法是将图像按照相似性准则分成不同的区域,主要包括种子区域生长法、区域分裂合并法和分水岭法等几种类型。种子区域生长法(Adams,1994)是根据预先定义的生长准则将像素点或者子区域合并成为更
3、大的区域的过程,具体实现时是从一组代表不同生长区域的种子像素开始,接下来将种子像素邻域里符合条件的像素合并到种子像素所代表的生长区域中,并将新添加的像素作为新的种子像素继续合并过程,直到找不到符合条件的新像素为止。该方法的关键是选择合适的初始种子像素以及合理的生长准则。与种子区域生长不同,区域分裂合并法(Gonzalez,2002)的基本思想是首先将图像任意分成若干互不相交的区域,然后再按照相关准则对这些区域进行分裂或者合并从而完成分割任务,该方法既适用于灰度图像分割也适用于纹理图像分割。分水岭法(Meyer,1990)是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上
4、的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。该算法的实现可以模拟成洪水淹没的过程,图像的最低点首先被淹没,然后水逐渐淹没整个山谷。当水位到达一定高度的时候将会溢出,这时在水溢出的地方修建堤坝,重复这个过程直到整个图像上的点全部被淹没,这时所建立的一系列堤坝就成为分开各个盆地的分水岭。分水岭算法对微弱的边缘有着良好的响应,但图像中的噪声会使分水岭算法产生过分割的现象。4)基于图论的分割方法 此类方法把图像分割问题与图的最小剪切问题相关联。首先将图像映射为带权无向图G=,图中每个节点EV对应于图像中的每个像素,每条边只
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图像 分割 方法 分类
限制150内