中考数学模块复习微专题靶向培优-二次函数计算与证明.docx
《中考数学模块复习微专题靶向培优-二次函数计算与证明.docx》由会员分享,可在线阅读,更多相关《中考数学模块复习微专题靶向培优-二次函数计算与证明.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考数学模块复习微专题靶向培优-二次函数计算与证明1. 如图,在平面直角坐标系中,抛物线yx2+bx+c与x轴交于点A,B,与y轴交于点C且直线yx6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N(1)求抛物线的函数解析式;(2)当MDB的面积最大时,求点P的坐标;2. 如图,抛物线yx2+bx+c与x轴交于A、B两点,与y轴交于点C,直线yx+2过B、C两点,连接AC(1)求抛物线的解析式;(2)求证:AOCACB;(3)点M(3,2)是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作DEx轴交直线BC
2、于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求PD+PM的最小值3.如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,1)(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且
3、点M,N的横坐标相同,记AFM面积为S1(当点M与点A,F重合时S1=0),ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1y2时,写出x的取值范围,并求出在此范围内S的最大值4. 如图,抛物线yax2+bx+c与x轴交于A(2,0)、B(6,0)两点,与y轴交于点C直线l与抛物线交于A、D两点,与y轴交于点E,点D的坐标为(4,3)(1)求抛物线的解析式与直线l的解析式;(2)若点P是抛物线上的点且在直线l上方,连接PA、PD,求当PAD面积最大时点P的坐标及该面积的最大值;(3)若点Q是y轴上的点,且ADQ45,求点Q的坐标5.如图,在平面直角坐标
4、系中,二次函数y=ax22x+c的图象与x轴交于A、B两点,点A在原点的左侧,点B的坐标为(3,0),与y轴交于点C(0,3),点P是直线BC下方的抛物线上一动点(1)求二次函数的表达式;(2)当点P运动到抛物线顶点时,求四边形ABPC的面积;(3)点Q是x轴上的一个动点,当点P与点C关于对称轴对称且以点B、C、P、Q为顶点的四边形是平行四边形时,求点Q的坐标6.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点(1)求二次函数的表达式;(2)当点P位于第二
5、象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使PDF与ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由7.如图,已知抛物线y=ax2+bx+5经过A(5,0),B(4,3)两点,与x轴的另一个交点为C,顶点为D,连结CD(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t当点P在直线BC的下方运动时,求PBC的面积的最大值;该抛物线上是否存在点P,使得PBC=BCD?若存在,求出所有点P的坐标;若不存在,请说明理由8.如图1,已
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中数学精品资料 中考数学精品专题 初中数学专题讲义 初中数学教学课件 初中数学学案 初中数学试卷 中考数学解题指导
限制150内