高中数学教学设计的概念案例分析.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高中数学教学设计的概念案例分析.docx》由会员分享,可在线阅读,更多相关《高中数学教学设计的概念案例分析.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学教学设计的概念案例分析 数学透过抽象化和逻辑推理的运用,由计数、计算、量度和对物体形态及运动的视察而产生。数学已成为很多国家及地区的教化范畴中的一部分。下面是我为大家整理的中学数学教学设计的概念案例分析5篇,希望大家能有所收获! 中学数学教学设计的概念案例分析1 教学目的: (1)使学生初步理解集合的概念,知道常用数集的概念及记法 (2)使学生初步了解“属于”关系的意义 (3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示 一些简洁的集合 授课类型:新授课 课时支配:1课时 教具:多媒体、实物投
2、影仪 内容分析: 1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从起先学习数学就离不开对逻辑学问的驾驭和运用,基本的逻辑学问在日常生活、学习、工作中,也是相识问题、探讨问题不行缺少的工具这些可以帮助学生相识学习本章的意义,也是本章学习的基础 把集合的初步学问与简易逻辑学问支配在中学数学的最起先,是因为在中学数学中,这些学问与其他内容有着亲密联系,它们是学习、驾驭和运用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑 本节首先从初中代
3、数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子 这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习爱好,使学生相识学习本章的意义本节课的教学重点是集合的基本概念 集合是集合论中的原始的、不定义的概念在起先接触集合的概念时,主要还是通过实例,对概念有一个初步相识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明 教学过程: 一、复习引入: 1.简介数集的发展,复习公约数和最小公倍数,质数与和数; 2.教材中的章
4、头引言; 3.集合论的创始人康托尔(德国数学家)(见附录); 4.“物以类聚”,“人以群分”; 5.教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集
5、合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合记作N, (2)正整数集:非负整数集内解除0的集记作N_或N+ (3)整数集:全体整数的集合记作Z, (4)有理数集:全体有理数的集合记作Q, (5)实数集:全体实数的集合记作R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括 数0 (2)非负整数集内解除0的集记作N_或N+Q、Z、R等其它 数集内解除0的集,也是这样表示,例如,整数集内解除0 的集,表示成Z_ 3、元素对于集合的隶属关系 (1)属于:假如a是集合A的元素,就说a属于A,记作aA (2
6、)不属于:假如a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:根据明确的推断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有肯定的依次(通常用正常的依次写出) 5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q 元素通常用小写的拉丁字母表示,如a、b、c、p、q “”的开口方向,不能把aA颠倒过来写 三、练习题: 1、教材P5练习1、2 2、下列各组对象能确定一个集合吗? (1)全部很大的实数(不确定) (2)好心的人(不确定) (3)1,2,2,3,4,5.(有重复) 3、设a,b
7、是非零实数,那么可能取的值组成集合的元素是_-2,0,2_ 4、由实数x,-x,|x|,所组成的集合,最多含(A) (A)2个元素(B)3个元素(C)4个元素(D)5个元素 5、设集合G中的元素是全部形如a+b(aZ,bZ)的数,求证: (1)当xN时,xG; (2)若xG,yG,则x+yG,而不肯定属于集合G 证明(1):在a+b(aZ,bZ)中,令a=xN,b=0, 则x=x+0_=a+bG,即xG 证明(2):xG,yG, x=a+b(aZ,bZ),y=c+d(cZ,dZ) x+y=(a+b)+(c+d)=(a+c)+(b+d) aZ,bZ,cZ,dZ (a+c)Z,(b+d)Z x+y
8、=(a+c)+(b+d)G, 又= 且不肯定都是整数, =不肯定属于集合G 四、小结:本节课学习了以下内容: 1.集合的有关概念:(集合、元素、属于、不属于) 2.集合元素的性质:确定性,互异性,无序性 3.常用数集的定义及记法 五、课后作业: 六、板书设计(略) 七、课后记: 中学数学教学设计的概念案例分析2 一、教材分析 1、 教材的地位和作用: 函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确敏捷地加以应用。本课中对函数概念理解的程度会干脆影响其它学问的学习,所以函数的第一课时特别的重要。
9、2、 教学目标及确立的依据: 教学目标: (1) 教学学问目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。 (2) 实力训练目标:通过教学培育的抽象概括实力、逻辑思维实力。 (3) 德育渗透目标:使懂得一切事物都是在不断改变、相互联系和相互制约的辩证唯物主义观点。 教学目标确立的依据: 函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而驾驭好函数的概念是学好函数的基石。 3、教学重点难点及确立的依据: 教学重点:映射的概念,函数的近代概念、函数的三
10、要素及函数符号的理解。 教学难点:映射的概念,函数近代概念,及函数符号的理解。 重点难点确立的依据: 映射的概念和函数的近代定义抽象性都比较强,要求学生的理性相识的实力也比较高,对于刚刚升入中学不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必定落在映射的概念和函数的近代定义及函数符号的理解与运用上。 二、教材的处理: 将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实
11、际动身调动学生的学习热忱与参加意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很精确的相识。 三、教学方法和学法 教学方法:讲授为主,自主预习为辅。 依据是:因为以新的观点相识函数概念及函数符号与运用时,更重要的是必需给学生讲清晰概念及留意事项,并通过师生的共同探讨来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和学问结构中打上深刻的烙印,为能学好后面的学问打下坚实的基础。 学法:四、教学程序 一、课程导入 通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。 例1:把高一(12)班和高一(11)全体同学分别看
12、成是两个集合,问,通过“找好挚友”这个对应法则是否能将这两个集合的某些元素联系在一起? 二. 新课讲授: (1) 接着再通过幻灯片给出六组学生熟识的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:ab,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导推断一个从a到b的对应是否为映射的关键是看a中的随意一个元素通过对应法则f在b中是否有确定的元素与之对应。 (2)巩固练习课本52页第八题。 此练习能让更深刻的相识到映射可以“一对多,多对一”但不能是“一对多”。 例1. 给出学生初中学过的
13、函数的传统定义和几个简洁的一次、二次函数,通过画图表示这些函数的对应关系,引导发觉它们是特别的映射进而给出函数的近代定义(设a、b是两个非空集合,假如根据某种对应法则f,使得a中的任何一个元素在集合b中都有的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:ab记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x)值叫做函数值,函数值的集合 f(x):xa叫做函数的值域。 并把函数的近代定义与映射定义比较使相识到函数与映射的区分与联系。(函数是非空数集到非空数集的映射)。 再以让推断的方式给出以下
14、关于函数近代定义的留意事项:2. 函数是非空数集到非空数集的映射。 3. f表示对应关系,在不同的函数中f的详细含义不一样。 4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。 5. 集合a中的数的随意性,集合b中数的性。 6. “f:ab”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且cb)。 三.讲解例题 例1.问y=1(xa)是不是函数? 解:y=1可以化为y=0_x+1 画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。 注:引导从集合,映射的观点相识函数的定义。 四.课时
15、小结: 1. 映射的定义。 2. 函数的近代定义。 3. 函数的三要素及符号的正确理解和应用。 4. 函数近代定义的五大留意点。 五.课后作业及板书设计 书本p51 习题2.1的1、2写在书上3、4、5上交。 预习函数三要素的定义域,并能求简洁函数的定义域。 函数(一) 一、映射: 2.函数近代定义: 例题练习 二、函数的定义 注15 1.函数传统定义 三、作业: 中学数学教学设计的概念案例分析3 一、教材分析 (一)地位与作用 数列是中学数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特别的函数与函数思想密不行分;另一方面学习数列也为进一步学习数列的极限
16、等内容做好打算。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上,对数列的学问进一步深化和拓广。同时等差数列也为今后学习等比数列供应了学习对比的依据。 (二)学情分析 (1)学生已娴熟驾驭_。 (2)学生的学问阅历较为丰富,具备了教强的抽象思维实力和演绎推理实力。 (3)学生思维活泼,主动性高,已初步形成对数学问题的合作探究实力。 (4)学生层次参次不齐,个体差异比较明显。 二、目标分析 新课标指出“三维目标”是一个亲密联系的有机整体,应当以获得学问与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以学问技能的培育为主线,透情感看法与价值观,并把
17、这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必需从学生的角度动身,依据_在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标: (一)教学目标 (1)学问与技能 使学生理解函数单调性的概念,初步驾驭判别函数单调性的方法;。 (2)过程与方法 引导学生通过视察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简洁的问题;使学生领悟数形结合的数学思想方法,培育学生发觉问题、分析问题、解决问题的实力。 (3)情感看法与价值观 在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培育学生擅长视察、勇于探究的良好习
18、惯和严谨的科学看法。 (二)重点难点 本节课的教学重点是_,教学难点是_。 三、教法、学法分析 (一)教法 基于本节课的内容特点和高二学生的年龄特征,根据临沂市中学数学“三五四”课堂教学策略,采纳探究体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我实行了: 1、通过学生熟识的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参加的主动性. 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参加,正确地形成概念. 3、在激励学生主体参加的同时,不行忽视老师的主导作用,要教会学生清楚的思维、严谨的推理,并顺当地完成书面表达. (二)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 教学 设计 概念 案例 分析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内