高层建筑烟气流动特性的模拟.docx
《高层建筑烟气流动特性的模拟.docx》由会员分享,可在线阅读,更多相关《高层建筑烟气流动特性的模拟.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高层建筑烟气流动特性的模拟1模型简介1.1耦合模拟CONTAM是目前应用最广泛的网络模型,由美国国家标准和技术研究院(NationalInstituteofStandardsandTechnology)下属建筑火灾研究实验室(BuildingandFireesearchLaboratory)开发,主要用于研究建筑物内多区域空气流动和污染物传播,也可用来建筑加压送风防烟及局部排烟系统的分析。它将建筑物内各房间认为节点,节点具有相同的物理参数,比如温度、压力等,节点连线将各区域连通起来,比作开启的门、窗户或者门缝、窗缝。每个节点是1个控制体,利用质量与能量守恒方程对建筑物内的空气流动、污染物分布及
2、压力分布进行计算,特别适合于远离着火房间的烟气流动分析11。为了得到起火房间、电梯竖井等区域内各物理参数的详细分布,实现了多区网络软件CONTAM与CFD0场模拟软件的耦合,目前可对1个区域进行场模拟,其他为网络区域模拟,两者之间的耦合如图1所示。1.2典型建筑模型设“典型建筑”为20层的高层建筑,每层层高为3m,每层面积500m2,楼梯间面积15m2,电梯竖井面积10m2,如图2所示。设楼层为1个区域,其各物理参数均匀分布,楼梯间与电梯井独立设置,忽略电梯轿厢的影响。楼梯间与楼层之间的疏散门尺寸均为1.6m2.0m,疏散门缝隙面积为0.0184m212,电梯门尺寸为2.0m1.2m,其缝隙面
3、积在场模拟计算中简化为当量孔口面积。由于CONTAM模型只是对各区域质量守恒方程求解,未考虑能量方程,所以火源及烟气等相关参数用其他热模型代替。CONTAM模型与CFD0模型耦合计算中,本文设定电梯竖井为CFD区域,采用标准k-湍流模型进行计算,网格数为20100600,竖井壁面为恒定温度40(室外环境温度为20)。将起火房间简化为“标准火源”4,10,13,假定起火楼层压差为10Pa,温度为500,作为计算采用的“标准火源”;网络模型中对烟气的传热未进行计算,考虑到竖井内的烟囱效应,假设存在一个热源在竖井内模拟热烟气的运动,发热量0.1MW;模拟过程中门窗均关闭,模拟状态为稳态,不考虑外界风
4、的影响。考虑到建筑火灾的随机性与多变性,计算结果的绝对值不是本文研究的重点,重点探讨的烟气在竖井内流动趋势以及各因素对竖井中和面位置的影响。2正交实验在“标准火源”下对“典型建筑”火灾中的烟气控制进行场-网模拟,研究竖井顶部开口面积、各楼层加压送风、电梯门密封性及不同着火楼层对电梯竖井内烟气流动的影响。为了减少实验次数,且不影响实验结果的前提下,采用正交实验的方法进行计算,实验的目标值是竖井中和面位置与排烟量,各影响因素及水平如表1所示。各楼层暖通空调设备进行加压送风,一般舒适性空调送风量为4.06.0次/h,取送风量分别为0次/h、1.0次/h、2.0次/h、3.0次/h;电梯门缝的宽度体现
5、了电梯门的密封性,一般缝隙宽度为3.012.0mm,取缝隙宽度分别为3.0mm、6.0mm、9.0mm、12.0mm。所进行的正交实验如表2所示,L1644表示16次实验,4个水平,4个因素。3计算结果及分析3.1电梯竖井内烟气温度分布电梯竖井内的烟气温度分布对烟囱效应的影响很大,在网络计算中经常设定为常数,会导致计算结果产生较大的误差4,10。采用场网耦合模拟的方法,电梯竖井采用场模拟,充分考虑烟气在竖直方向上的分布,其它区域为充分混合区域。一般而言,着火层位于1层,着火层以上楼层数更多,烟气更容易侵入各楼层,此时对建筑火灾是最不利的,取电梯门缝宽度6.0mm、各楼层送风量3.0次/h、竖井
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高层建筑 烟气 流动 特性 模拟
限制150内