2012年浙江省绍兴市中考数学试卷.docx
《2012年浙江省绍兴市中考数学试卷.docx》由会员分享,可在线阅读,更多相关《2012年浙江省绍兴市中考数学试卷.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2012年浙江省绍兴市中考数学试卷一选择题(共10小题)1(2012绍兴)3的相反数是()A3BCD 考点:相反数。解答:解:根据相反数的概念及意义可知:3的相反数是3。故选B。2(2012绍兴)下列运算正确的是()ABCD考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。解答:解:A、x+x=2x,此选项错误;B、x6x2=x4,此选项错误;C、xx3=x4,此选项正确;D、(2x2)3=8x6,此选项错误。故选C。3(2012绍兴)据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A4.6108B46108C4.6109D0.4610
2、10考点:科学记数法表示较大的数。解答:解:4 600 000 000用科学记数法表示为:4.6109。故选:C。4(2012绍兴)如图所示的几何体,其主视图是()A B CD考点:简单组合体的三视图。解答:解:从物体正面看,看到的是一个等腰梯形。故选C。5(2012绍兴)化简可得()ABCD考点:分式的加减法。解答:解:原式=。故选B。6(2012绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的ABCD,点A的坐标是(0,2)现将这张胶片平移,使点A落在点A(5,1)处,则此平移可以是()A先向右平移5个单位,再向下平移1个单位B先向右平移5个单位,再向下平移3个单位C先向右平移4个单位
3、,再向下平移1个单位D先向右平移4个单位,再向下平移3个单位考点:坐标与图形变化-平移。解答:解:根据A的坐标是(0,2),点A(5,1),横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位,故选:B。7(2012绍兴)如图,AD为O的直径,作O的内接正三角形ABC,甲、乙两人的作法分别是:甲:1、作OD的中垂线,交O于B,C两点, 2、连接AB,AC,ABC即为所求的三角形 乙:1、以D为圆心,OD长为半径作圆弧,交O于B,C两点。 2、连接AB,BC,CAABC即为所求的三角形。对于甲、乙两人的作法,可判断()A甲、乙均正确B甲、乙均错误C甲正确、乙错误D甲错误,乙正确考
4、点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形。解答:解:根据甲的思路,作出图形如下:连接OB,BC垂直平分OD,E为OD的中点,且ODBC,OE=DE=OD,又OB=OD,在RtOBE中,OE=OB,OBE=30,又OEB=90,BOE=60,OA=OB,OAB=OBA,又BOE为AOB的外角,OAB=OBA=30,ABC=ABO+OBE=60,同理C=60,BAC=60,ABC=BAC=C,ABC为等边三角形,故甲作法正确;根据乙的思路,作图如下:连接OB,BD,OD=BD,OD=OB,OD=BD=OB,BOD为等边三角形,OBD=BOD=60,又BC垂直平分OD,OM=DM
5、,BM为OBD的平分线,OBM=DBM=30,又OA=OB,且BOD为AOB的外角,BAO=ABO=30,ABC=ABO+OBM=60,同理ACB=60,BAC=60,ABC=ACB=BAC,ABC为等边三角形,故乙作法正确,故选A8(2012绍兴)如图,扇形DOE的半径为3,边长为的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为()ABCD考点:圆锥的计算;菱形的性质。解答:解:连接OB,AC,BO与AC相交于点F,在菱形OABC中,ACBO,CF=AF,FO=BF,COB=BOA,又扇形DOE的半径为3,边长为,FO=BF=1.5,cosFOC
6、=,FOC=30,EOD=230=60,底面圆的周长为:2r=,解得:r=,圆锥母线为:3,则此圆锥的高为:,故选:D。9(2012绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10cm,如图,第一棵树左边5cm处有一个路牌,则从此路牌起向右510m550m之间树与灯的排列顺序是()ABCD考点:规律型:图形的变化类。解答:解:根据题意得:第一个灯的里程数为10米,第二个灯的里程数为50,第三个灯的里程数为90米第n个灯的里程数为10+40(n1)=(40n30)米,故当n=14时候,40n30=530米处是灯,则510米、520米、540
7、米处均是树,故应该是树、树、灯、树,故选B。10(2012绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;设Pn1Dn2的中点为Dn1,第n次将纸片折叠,使点A与点Dn1重合,折痕与AD交于点Pn(n2),则AP6的长为()ABC D考点:翻折变换(折叠问题)。解答:解:由题意得,AD=BC=,AD1=ADDD1=,AD2=,AD3=,ADn=,故
8、AP1=,AP2=,AP3=APn=,故可得AP6=。故选A。二填空题(共6小题)11(2012绍兴)分解因式:= 。考点:提公因式法与公式法的综合运用。解答:解:。12(2012绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是 m。考点:二次函数的应用。解答:解:令函数式中,解得,(舍去),即铅球推出的距离是10m。故答案为:10。13(2012绍兴)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是 。考点:列表法与树状图法。
9、解答:解:画树状图得:共有24种等可能的结果,第二个人摸出红球且第三个人摸出白球的有8种情况,第二个人摸出红球且第三个人摸出白球的概率是:。故答案为:。14(2012绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是 (只需填序号)。考点:函数的图象。解答:解:小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,表示母亲离家的时间与距离之间的关系的图象是;父亲看了10分报纸后,用了15分返回家,表示父亲离家的时间与距离之间的关系的图象是
10、。故答案为:。15(2012绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将ABE沿AE折叠,使点B落在AC上的点B处,又将CEF沿EF折叠,使点C落在EB与AD的交点C处则BC:AB的值为 。考点:翻折变换(折叠问题)。解答:解:连接CC,将ABE沿AE折叠,使点B落在AC上的点B处,又将CEF沿EF折叠,使点C落在EB与AD的交点C处。EC=EC,ECC=ECC,DCC=ECC,ECC=DCC,得到CC是ECD的平分线,CBC=D=90,CB=CD,又AB=AB,所以B是对角线AC中点,即AC=2AB,所以ACB=30,cotACB=cot30=,BC:AB的值为:。故答案为:
11、。16(2012绍兴)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为 (用含n的代数式表示)考点:反比例函数综合题。解答:解:设反比例函数解析式为,则与BC,AB平移后的对应边相交;与AB平移后的对应边相交的交点的坐标为(2,1.4),则,解得,故反比例函数解析式为。则第n次(n1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为:;与OC,AB平移后的对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012 浙江省 绍兴市 中考 数学试卷
限制150内