2019年高考真题——文科数学(天津卷).docx
《2019年高考真题——文科数学(天津卷).docx》由会员分享,可在线阅读,更多相关《2019年高考真题——文科数学(天津卷).docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019年普通高等学校招生全国统一考试(天津卷)文科数学本试卷分为第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120分钟。第卷1至2页,第卷3至5页。答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。祝各位考生考试顺利第卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分共40分。参考公式:如果事件A,B互斥,那么.圆柱的体积公式,其中表示圆柱的底面面积,表示
2、圆柱的高棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合, , ,则A. 2B. 2,3C. -1,2,3D. 1,2,3,4【答案】D【解析】【分析】先求,再求。【详解】因为,所以.故选D。【点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算2.设变量满足约束条件,则目标函数的最大值为A. 2B. 3C. 5D. 6【答案】D【解析】【分析】画出可行域,用截距模型求最值。【详解】已知不等式组表示的平面区域如图中的阴影部分。目标函数的几何意义是
3、直线在轴上的截距,故目标函数在点处取得最大值。由,得,所以。故选C。【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围即:一画,二移,三求3.设,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】求出的解集,根据两解集的包含关系确定.【详解】等价于,故推不出;由能推出。故“”是“”的必要不充分条件。故选B。【点睛】充要条件的三种判断方法:(1)定义法:根
4、据pq,qp进行判断;(2)集合法:根据由p,q成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断这个方法特别适合以否定形式给出的问题4.阅读右边的程序框图,运行相应的程序,输出的值为A. 5B. 8C. 24D. 29【答案】B【解析】【分析】根据程序框图,逐步写出运算结果。【详解】,结束循环,故输出故选B。【点睛】解决此类型问题时要注意:要明确是当型循环结构,还是直到型循环结构,根据各自的特点执行循环体;要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;要明确循环体终止的条件是
5、什么,会判断什么时候终止循环体5.已知,则的大小关系为A. B. C. D. 【答案】A【解析】【分析】利用利用等中间值区分各个数值的大小。【详解】;。故。故选A。【点睛】利用指数函数、对数函数的单调性时要根据底数与的大小区别对待。6.已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为A. B. C. 2D. 【答案】D【解析】【分析】只需把用表示出来,即可根据双曲线离心率的定义求得离心率。【详解】的方程为,双曲线的渐近线方程为,故得,所以,所以。故选D。【点睛】双曲线的离心率.7.已知函数是奇函数,且的最小正周期为,将的图象上所有点的横坐标
6、伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若,则A. -2B. C. D. 2【答案】C【解析】【分析】只需根据函数性质逐步得出值即可。【详解】为奇函数,可知,由可得;把其图象上各点的横坐标伸长到原来的倍,得,由的最小正周期为可得,由,可得,所以,。故选C。8.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D. 【答案】D【解析】分析】画出图象及直线,借助图象分析。【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求。即,即,或者,得,即,得,所以的取值范围是。故选D。【点睛】根据方程实根个数确定参数范围,常把其转化
7、为曲线交点个数,特别是其中一条为直线时常用此法。绝密启用前第卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。2.本卷共12小题,共110分。二、填空题:本大题共6小题,每小题5分,共30分。9.是虚数单位,则的值为_.【答案】【解析】【分析】先化简复数,再利用复数模的定义求所给复数的模。【详解】解法一:。解法二:。【点睛】所以解答与复数概念或运算有关的问题时,需把所给复数化为代数形式,即abi(a,bR)的形式,再根据题意求解10. 设,使不等式成立的的取值范围为_.【答案】【解析】【分析】通过因式分解,解不等式。【详解】,即,即,故的取值范围是。【点睛】解一元二次不等式的步骤:(
8、1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集容易出现的错误有:未将二次项系数化正,对应错标准形式;解方程出错;结果未按要求写成集合11. 曲线在点处的切线方程为_.【答案】【解析】【分析】利用导数值确定切线斜率,再用点斜式写出切线方程。【详解】,当时其值为,故所求的切线方程为,即。【点睛】曲线切线方程的求法:(1)以曲线上的点(x0,f(x0)为切点的切线方程的求解步骤:求出函数f(x)的导数f(x);求切线的斜率f(x0);写出切线方程yf(x0)f(x0)(xx0),并化简(2)如果已知点(x1,y1)不在曲
9、线上,则设出切点(x0,y0),解方程组得切点(x0,y0),进而确定切线方程12.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_.【答案】.【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径。【详解】四棱锥的高为,故圆柱的高为,圆柱的底面半径为,故其体积为。【点睛】圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半。13. 设,则的最小值为_.【答案】【解析】14. 在四边形中, , , ,点在线段的延长线上,且,则_.【答案】.【解析】【分析】可利用向量的线性运算,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 考真题 文科 数学 天津
限制150内