2013年黑龙江省齐齐哈尔、黑河、大兴安岭初中升学考试数学试卷.docx
《2013年黑龙江省齐齐哈尔、黑河、大兴安岭初中升学考试数学试卷.docx》由会员分享,可在线阅读,更多相关《2013年黑龙江省齐齐哈尔、黑河、大兴安岭初中升学考试数学试卷.docx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、黑龙江省齐齐哈尔、黑河、大兴安岭2013年中考数学试卷一、单项选择题(每题3分,满分30分)1(3分)(2013齐齐哈尔)下列数字中既是轴对称图形又是中心对称图形的有几个()A1个B2个C3个D4个考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解解答:解:第一个数字不是轴对称图形,是中心对称图形,不符合题意;第二个数字即是轴对称图形,又是中心对称图形,符合题意;第三个数字既是轴对称图形,又是中心对称图形符合题意;第四个数字是轴对称图形,不是中心对称图形,不符合题意共2个既是轴对称图形又是中心对称图形故选B点评:掌握中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对
2、称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180后与原图重合2(3分)(2013齐齐哈尔)下列各式计算正确的是()Aa2+a2=2a4B=3C(1)1=1D()2=7考点:负整数指数幂;算术平方根;合并同类项;二次根式的乘除法分析:分别进行合并同类项、二次根式的化简、负整数指数幂、乘方等运算,然后结合选项选出正确答案即可解答:解:A、a2+a2=2a2,原式计算错误,故本选项错误;B、=3,原式计算错误,故本选项错误;C、(1)1=1,原式计算错误,故本选项错误;D、()2=7,原式计算正确,故本选项正确;故选D点评:本题考查了合并同类项、二次根式的化简、负整数
3、指数幂、乘方等知识,属于基础题,掌握各知识点的运算法则是解题的关键3(3分)(2013齐齐哈尔)如图,是一种古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()ABC来源:Zxxk.ComD考点:函数的图象来源:Zxxk.Com分析:由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断解答:解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、D;
4、由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C选项;故选B点评:主要考查了函数图象的读图能力和函数与实际问题结合的应用要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论4(3分)(2013齐齐哈尔)CD是O的一条弦,作直径AB,使ABCD,垂足为E,若AB=10,CD=8,则BE的长是()A8B2C2或8D3或7考点:垂径定理;勾股定理专题:计算题分析:连结OC,根据垂径定理得到CE=4,再根据勾股定理计算出OE=3,分类讨论:当点E在半径OB上时,BE=OBOE;当点E在半径OA上时,BE=OB+OE,然后把CE、OE的值代入计
5、算即可解答:解:如图,连结OC,直径ABCD,CE=DE=CD=8=4,在RtOCE中,OC=AB=5,OE=3,当点E在半径OB上时,BE=OBOE=53=2,当点E在半径OA上时,BE=OB+OE=5+3=8,BE的长为2或8故选C点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理5(3分)(2013齐齐哈尔)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A甲队B乙队C丙队D哪一个
6、都可以考点:方差分析:根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定解答:解:S甲2=1.4,S乙2=18.8,S丙2=25,S甲2最小,他应选甲对;故选A点评:本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定6(3分)(2013齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A5
7、种B4种C3种D2种考点:二元一次方程的应用分析:设住3人间的需要x间,住2人间的需要y间,根据总人数是17人,列出不定方程,解答即可解答:解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,答:有3种不同的安排故选:C点评:此题主要考查了二元一次方程的应用,解答此题的关键是,根据题意,设出未知数,列出不定方程,再根据不定方程
8、的未知数的特点解答即可7(3分)(2013齐齐哈尔)已知二次函数y=ax2+bx+c(a0)的图象经过点(x1,0)、(2,0),且2x11,与y轴正半轴的交点在(0,2)的下方,则下列结论:abc0;b24ac;2a+b+10;2a+c0则其中正确结论的序号是()ABCD考点:二次函数图象与系数的关系分析:由于抛物线过点(x1,0)、(2,0),且2x11,与y轴正半轴相交,则得到抛物线开口向下,对称轴在y轴右侧,于是可判断a0,b0,c0,所以abc0;利用抛物线与x轴有两个交点得到b24ac0,即b24ac;由于x=2时,y=0,即4a+2b+c=0,变形得2a+b+=0,则根据0c2得
9、2a+b+10;根据根与系数的关系得到2x1=,即x1=,所以21,变形即可得到2a+c0解答:解:如图,二次函数y=ax2+bx+c(a0)的图象经过点(x1,0)、(2,0),且2x11,与y轴正半轴相交,a0,c0,对称轴在y轴右侧,即x=0,b0,abc0,所以正确;抛物线与x轴有两个交点,b24ac0,即b24ac,所以正确;当x=2时,y=0,即4a+2b+c=0,2a+b+=0,0c2,2a+b+10,所以错误;二次函数y=ax2+bx+c(a0)的图象经过点(x1,0)、(2,0),方程ax2+bx+c=0(a0)的两根为x1,2,2x1=,即x1=,而2x11,21,a0,4
10、ac2a,2a+c0,所以正确故选C点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a0)的图象为抛物线,当a0,抛物线开口向上;对称轴为直线x=;抛物线与y轴的交点坐标为(0,c);当b24ac0,抛物线与x轴有两个交点;当b24ac=0,抛物线与x轴有一个交点;当b24ac0,抛物线与x轴没有交点8(3分)(2013齐齐哈尔)下列说法正确的是()A相等的圆心角所对的弧相等B无限小数是无理数C阴天会下雨是必然事件D在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k考点:位似变换;无理数;圆心角、弧、弦的关系;随机事件分
11、析:根据圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质分别判断得出答案即可解答:解:A、根据同圆或等圆中相等的圆心角所对的弧相等,故此选项错误;B、根据无限不循环小数是无理数,故此选项错误;C、阴天会下雨是随机事件,故此选项错误;D、根据位似图形的性质得出:在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k,故此选项正确;故选:D点评:此题主要考查了圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质等知识,熟练掌握相关性质是解题关键9(3分)(2013齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2
12、+1与y=的交点的横坐标x0的取值范围是()A0x01B1x02C2x03D1x00考点:二次函数的图象;反比例函数的图象专题:数形结合分析:建立平面直角坐标系,然后利用网格结构作出函数y=x2+1与y=的图象,即可得解解答:解:如图,函数y=x2+1与y=的交点在第一象限,横坐标x0的取值范围是1x02故选B点评:本题考查了二次函数图象,反比例函数图象,准确画出大致函数图象是解题的关键,此类题目利用数形结合的思想求解更加简便10(3分)(2013齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线
13、交于点M,下列结论:BG=CE BGCE AM是AEG的中线 EAM=ABC,其中正确结论的个数是()A4个B3个C2个D1个考点:全等三角形的判定与性质;正方形的性质分析:根据正方形的性质可得AB=AE,AC=AG,BAE=CAG=90,然后求出CAE=BAG,再利用“边角边”证明ABG和AEC全等,根据全等三角形对应边相等可得BG=CE,判定正确;设BG、CE相交于点N,根据全等三角形对应角相等可得ACE=AGB,然后求出CNG=90,根据垂直的定义可得BGCE,判定正确;过点E作EPHA的延长线于P,过点G作GQAM于Q,根据同角的余角相等求出ABH=EAP,再利用“角角边”证明ABH和
14、EAP全等,根据全等三角形对应角相等可得EAM=ABC判定正确,全等三角形对应边相等可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用“角角边”证明EPM和GQM全等,根据全等三角形对应边相等可得EM=GM,从而得到AM是AEG的中线解答:解:在正方形ABDE和ACFG中,AB=AE,AC=AG,BAE=CAG=90,BAE+BAC=CAG+BAC,即CAE=BAG,在ABG和AEC中,ABGAEC(SAS),BG=CE,故正确;设BG、CE相交于点N,ABGAEC,ACE=AGB,NCF+NGF=ACF+AGF=90+90=180,CNG=360(NCF+NGF+F)=360(1
15、80+90)=90,BGCE,故正确;过点E作EPHA的延长线于P,过点G作GQAM于Q,AHBC,ABH+BAH=90,BAE=90,EAP+BAH=18090=90,ABH=EAP,在ABH和EAP中,ABHEAP(AAS),EAM=ABC,故正确,EP=AH,同理可得GQ=AH,EP=GQ,在EPM和GQM中,EPMGQM(AAS),EM=GM,AM是AEG的中线,故正确综上所述,结论都正确故选A点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,在解答时作辅助线EPHA的延长线于P,过点G作GQAM于Q构造出全等三角形是难点,运用全等三角形的性质是关键二、填空题(每题3分
16、,满分30分)11(3分)(2013齐齐哈尔)某种病毒近似于球体,它的半径约为0.00000000495米,用科学记数法表示为4.95109米考点:科学记数法表示较小的数分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定解答:解:0.00000000495米用科学记数法表示为4.95109故答案为:4.95109点评:本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定12(3分)(2013齐齐哈尔
17、)小明“六一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8分),小明能获得奖品的概率是考点:几何概率分析:根据概率的意义解答即可解答:解:飞镖盘被平均分成8分,阴影部分占3块,小明能获得奖品的概率是故答案为:点评:本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比13(3分)(2013齐齐哈尔)函数y=(x2)0中,自变量x的取值范围是x0且x3且x2考点:函数自变量的取值范围;零指数幂分析:根据被开方数大于等于0,分母不等于0,零指数幂的底数不等于0列式计算即可得解解答:解:根据题意得,x0且x30且x20,解得x0且x3且x2故答案为:x0且x3且x2点
18、评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数;零指数幂的底数不等于零14(3分)(2013齐齐哈尔)圆锥的母线长为6cm,底面周长为5cm,则圆锥的侧面积为15cm2考点:圆锥的计算分析:圆锥的侧面积:S侧=2rl=rl,代入计算即可解答:解:S侧=2rl=56=15cm2故答案为:15cm2点评:本题考查了圆锥的计算,解答本题的关键是熟练记忆圆锥侧面积的计算方法15(3分)(2013齐齐哈尔)如图,要使ABC与DBA相似,则只需添加一个适当的条件是C=BAD(填一个即可)考点:相似三角形的判定专题:开放型分析:根据相似三角形的判定:(1)三边法:三组对应边的比相
19、等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,进行添加即可解答:解:B=B(公共角),可添加:C=BAD此时可利用两角法证明ABC与DBA相似故答案可为:C=BAD点评:本题考查了相似三角形的判定,注意掌握相似三角形判定的三种方法,本题答案不唯一16(3分)(2013齐齐哈尔)若关于x的分式方程=2有非负数解,则a的取值范围是a且a考点:分式方程的解分析:将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围解答:解:分式方程去分母得:2x=3a4(x1
20、),移项合并得:6x=3a+4,解得:x=,分式方程的解为非负数,0且10,解得:a且a故答案为:a且a点评:此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x10这个隐含条件17(3分)(2013齐齐哈尔)如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图则这个几何体可能是由6或7或8个正方体搭成的考点:由三视图判断几何体分析:易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二、三层立方体的可能的个数,相加即可解答:解:综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有1个,最多有2个,第三层最少有1个,最多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 黑龙江省 齐齐哈尔 黑河 大兴安岭 初中 升学考试 数学试卷
限制150内