扩展卡尔曼滤波EKF(共3页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《扩展卡尔曼滤波EKF(共3页).doc》由会员分享,可在线阅读,更多相关《扩展卡尔曼滤波EKF(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三章 扩展卡尔曼滤波EKF3.1 扩展Kalman滤波原理Kalman滤波能够在线性高斯模型的条件下,可以对目标的状态做出最优的估计,得到较好的跟踪效果。对非线性滤波问题常用的处理方法是利用线性化技巧将其转化为一个近似的线性滤波问题。因此,可以利用非线性函数的局部性特性,将非线性模型局部化,再利用Kalman滤波算法完成滤波跟踪。扩展Kalman滤波就是基于这样的思想,将系统的非线性函数做一阶Taylor展开,得到线性化的系统方程从而完成对目标的滤波估计等处理。非线性系统离散动态方程可以表示为 (3-1-1) (3-1-2)这里为了便于数学处理,假定没有控制量的输入
2、,并假定过程噪声是均值为零的高斯白噪声,且噪声分布矩阵是已知的。其中,观测噪声也是加性均值为零的高斯白噪声。假定过程噪声和观测噪声序列是彼此独立的,并且有初始状态估计和协方差矩阵。和线性系统的情况一样,我们可以得到扩展Kalman滤波算法如下 (3-1-3) (3-1-4) (3-1-5) (3-1-6) (3-1-7)这里需要重要说明的是,状态转移和量测矩阵 是由和的雅克比矩阵代替的。其雅克比矩阵的求法如下: 假如状态变量有n维,即,则对状态方程对各维求偏导, (3-1-8) (3-1-9)3.2 扩展卡尔曼在一维非线性系统中的应用3.2.1 状态方程和观测方程都为非线性的通用系统所谓的非线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 扩展 卡尔 滤波 EKF
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内