有机波谱分析第04章核磁共振谱.ppt
《有机波谱分析第04章核磁共振谱.ppt》由会员分享,可在线阅读,更多相关《有机波谱分析第04章核磁共振谱.ppt(119页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章第四章核磁共振谱核磁共振谱NMR nuclear magnetic resonance spectroscopy1核磁共振的基本原理核磁共振的基本原理化学位移化学位移影响化学位移的因素影响化学位移的因素自旋偶合与自旋裂分自旋偶合与自旋裂分1 H1 NMR 谱图的解析谱图的解析13 C6 NMR 谱简介谱简介本章讲授提要本章讲授提要2 核磁共振波谱(核磁共振波谱(Nuclear Magnetic Resonance spectroscopy,NMR)类似于红外或紫外吸收光谱,是吸)类似于红外或紫外吸收光谱,是吸收光谱的另一种形式。收光谱的另一种形式。核磁共振波谱是测量原子核对射频辐射核磁共
2、振波谱是测量原子核对射频辐射(4600MHz)的吸收,这种吸收只有在的吸收,这种吸收只有在高磁场高磁场中才能产生。中才能产生。核磁共振是近几十年发展起来的新技术,它与元素分析、核磁共振是近几十年发展起来的新技术,它与元素分析、紫外光谱、红外光谱、质谱等方法配合,已成为化合物紫外光谱、红外光谱、质谱等方法配合,已成为化合物结构测定的有力工具。目前核磁共振波谱的应用已经渗结构测定的有力工具。目前核磁共振波谱的应用已经渗透到化学学科的各个领域,透到化学学科的各个领域,广泛应用于有机化学、药物广泛应用于有机化学、药物化学、生物化学、环境化学等与化学相关的各个学科。化学、生物化学、环境化学等与化学相关的
3、各个学科。3结构的测定和确证,有时还可以测定构象和构结构的测定和确证,有时还可以测定构象和构型;型;化合物的纯度的检查,它的灵敏度很高,能够化合物的纯度的检查,它的灵敏度很高,能够检测出用层析和纸层析检查不出来的杂质;检测出用层析和纸层析检查不出来的杂质;混合物的分析,如果主要信号不重叠,不需要混合物的分析,如果主要信号不重叠,不需要分离就能测定出混合物的比率;分离就能测定出混合物的比率;质子交换,单键的旋转和环的转化等。质子交换,单键的旋转和环的转化等。在化学领域中的应用在化学领域中的应用4核磁共振核磁共振(MRI)又叫又叫核磁共振成像核磁共振成像技术。是继技术。是继CT后后医学影像学的又一
4、重大进步。自医学影像学的又一重大进步。自80年代应用以来,年代应用以来,它以极快的速度得到发展。其基本原理:它以极快的速度得到发展。其基本原理:是将人是将人体置于特殊的磁场中,用无线电射频脉冲激发人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。做核磁
5、共振成像。医学上用核磁共振来干什么医学上用核磁共振来干什么 54.1 核磁共振的基本原理核磁共振的基本原理4.1.1 原子核的自旋和磁性质原子核的自旋和磁性质 原子核与电子类似,也有自旋现象。核原子核与电子类似,也有自旋现象。核的自旋可以用自旋量子数的自旋可以用自旋量子数(I)来描述。自旋来描述。自旋量子数量子数(I)的取值取决于原子序数的取值取决于原子序数(Z)和原和原子的质量数子的质量数(A)。6 原子核是带正电荷的粒子,和电子一样有自旋现象,原子核是带正电荷的粒子,和电子一样有自旋现象,因而具有自旋角动量以及相应的自旋量子数。由于原子因而具有自旋角动量以及相应的自旋量子数。由于原子核是具
6、有一定质量的带正电的粒子,故在自旋时会产生核是具有一定质量的带正电的粒子,故在自旋时会产生核磁矩。核磁矩和角动量都是矢量,它们的方向相互平核磁矩。核磁矩和角动量都是矢量,它们的方向相互平行,且磁矩与角动量成正比,即行,且磁矩与角动量成正比,即=p(4.1)式中:式中:为旋磁比(为旋磁比(magnetogyricratio),radT1s1,即,即核磁矩与核的自旋角动量的比值,不同的核具有不同旋核磁矩与核的自旋角动量的比值,不同的核具有不同旋磁比,它是磁核的一个特征值;磁比,它是磁核的一个特征值;为磁矩,用核磁子表示,为磁矩,用核磁子表示,1核磁子单位等于核磁子单位等于5.051027JT1;原
7、子核的磁矩原子核的磁矩7p为角动量,其值是量子化的,可用自旋量子数为角动量,其值是量子化的,可用自旋量子数表示表示p为角动量,其值是量子化的,可用自旋量子为角动量,其值是量子化的,可用自旋量子数表数表(5.2)式中:式中:h为普郎克常数(为普郎克常数(6.631034Js););I为为自旋量子数,与原子的质量数及原子序数有关。自旋量子数,与原子的质量数及原子序数有关。8自旋量子数(自旋量子数(I)的取值)的取值原子序数原子序数 质量数质量数 自旋量子数自旋量子数 自旋现象自旋现象 (Z)(A)(I)偶数偶数 偶数偶数 零零 无无12 C6、16 O8奇数或奇数或 奇数奇数 1/2,3/2,5/
8、2,半整数半整数 有有偶数偶数1 H1、13 C6、19 F9 奇数奇数 偶数偶数 1,2,3,整数整数 有有2 H1、14 N79当当I=0时,时,p=0,原子核没有磁矩,没有自旋现象;当,原子核没有磁矩,没有自旋现象;当I0时,时,p 0,原子核磁矩不为零,有自旋现象。,原子核磁矩不为零,有自旋现象。I=1/2的原子核在自旋过程中核外电子云呈均匀的球型的原子核在自旋过程中核外电子云呈均匀的球型分布,见图(分布,见图(b)核磁共振谱线较窄,最适宜核磁共振)核磁共振谱线较窄,最适宜核磁共振检测,是检测,是NMR主要的研究对象。主要的研究对象。I1/2的原子核,自旋的原子核,自旋过程中电荷在核表
9、面非均匀分布过程中电荷在核表面非均匀分布 原子核的自旋形状10有机化合物的基本元素有机化合物的基本元素13C、1H、15N、19F、31P等等都有核磁共振信号,且自旋量子数均为都有核磁共振信号,且自旋量子数均为1/2,核磁共振信,核磁共振信号相对简单,已广泛用于有机化合物的结构测定号相对简单,已广泛用于有机化合物的结构测定然而,核磁共振信号的强弱是与被测磁性核的天然而,核磁共振信号的强弱是与被测磁性核的天然丰度和旋磁比的立方成正比的,如然丰度和旋磁比的立方成正比的,如1H的天然丰度为的天然丰度为99.985%,19F和和31P的丰度均为的丰度均为100%,因此,它们的共,因此,它们的共振信号较
10、强,容易测定,而振信号较强,容易测定,而13C的天然丰度只有的天然丰度只有1.1%,很有用的很有用的15N和和17O核的丰度也在核的丰度也在1%以下,它们的共振信以下,它们的共振信号都很弱,必须在傅里叶变换核磁共振波谱仪上经过号都很弱,必须在傅里叶变换核磁共振波谱仪上经过多多次扫描次扫描才能得到有用的信息。才能得到有用的信息。114.1.2 原子核的进动和在磁场中的取向原子核的进动和在磁场中的取向 按照量子力学理论,自旋核在外加磁场中的按照量子力学理论,自旋核在外加磁场中的自旋取向数不是任意的,可按下式计算:自旋取向数不是任意的,可按下式计算:自旋取向数自旋取向数=2I1以以H核为例,因核为例
11、,因I=1/2,故在外加磁场中,自,故在外加磁场中,自旋取向数旋取向数=2(1/2)1=2,即有两个且自旋相,即有两个且自旋相反的两个取向,反的两个取向,其中一个取向磁矩与外加磁场其中一个取向磁矩与外加磁场B0一致一致;另一取向,;另一取向,磁矩与外加磁场磁矩与外加磁场B0相反相反。两种取向与外加磁场间的夹角经计算分别为两种取向与外加磁场间的夹角经计算分别为54024(1)及)及125036(2)。见图)。见图12H核在磁场中的行为131 H1置于外磁场中时产生的能量裂分置于外磁场中时产生的能量裂分E=+H0E=-H0E=+H0-(-H0)=2H0:核磁矩核磁矩(常数常数1 H1=2.7927
12、8)H0:外加磁场强度外加磁场强度14应当注意,每个自旋取向将分别代表原子核的某个特定的应当注意,每个自旋取向将分别代表原子核的某个特定的能量状态,并可用磁量子数能量状态,并可用磁量子数(m)来表示,它是不连续的量子化来表示,它是不连续的量子化能级。能级。m取值可由取值可由 I0I决定。例如:决定。例如:I=1/2,则,则m=1/2,0,1/2;I=1,则,则m=1,0,1。在上图中,当在上图中,当自旋取向与外加磁场一致自旋取向与外加磁场一致时时(m=1/2),氢,氢核处于一种核处于一种低能级状态低能级状态(E=B0);相反时;相反时(m=1/2),氢核处,氢核处于一种于一种高能级状态高能级状
13、态(E=B0)两种取向间的能级差,可用两种取向间的能级差,可用E来来表示:表示:E=E2E1=B0(B0)=2B0(4.3)式中:式中:为氢核磁矩;为氢核磁矩;B0为外加磁场强度为外加磁场强度上式表明:上式表明:氢核由低能级氢核由低能级E1向高能级向高能级E2跃迁时需要的能量跃迁时需要的能量E与外加磁场强度与外加磁场强度B0及氢核磁矩及氢核磁矩成正比成正比 15高能自旋态与低能自旋态的能量之差高能自旋态与低能自旋态的能量之差E=+H0E=-H0高低自旋态能量的差值(高低自旋态能量的差值(E)与外加磁场)与外加磁场的强度成正比。的强度成正比。16同理,同理,I=1/2的不同原子核,因磁矩不同,的
14、不同原子核,因磁矩不同,即使在同一外加磁场强度下,发生核跃迁时需即使在同一外加磁场强度下,发生核跃迁时需要的能量也是不同的要的能量也是不同的。例如氟核磁矩。例如氟核磁矩(F)(H),故在同一外加磁场强度下发生核跃迁时,故在同一外加磁场强度下发生核跃迁时,氢核需要的能量将高于氟核氢核需要的能量将高于氟核 17当原子核的核磁矩处于外加磁场当原子核的核磁矩处于外加磁场B0 中,由于核自身中,由于核自身的旋转,而外加磁场又力求它取向于磁场方向,在这两种的旋转,而外加磁场又力求它取向于磁场方向,在这两种力的作用下,核会在自旋的同时绕外磁场的方向进行回旋,力的作用下,核会在自旋的同时绕外磁场的方向进行回旋
15、,这种运动称为这种运动称为Larmor进动。进动。核的回旋核的回旋18原子核在磁场中的回旋原子核在磁场中的回旋,这种现象与一个自旋的陀这种现象与一个自旋的陀螺与地球重力线做回旋的情况相似。螺与地球重力线做回旋的情况相似。换句话说:换句话说:由于磁场的作用,原子核一方面绕轴由于磁场的作用,原子核一方面绕轴自旋,另一方面自旋轴又围绕着磁场方向进动自旋,另一方面自旋轴又围绕着磁场方向进动。其进动其进动频率,除与原子核本身特征有关外,还与外界的磁场强频率,除与原子核本身特征有关外,还与外界的磁场强度有关度有关。进动时的频率、自旋质点的角速度与外加磁场。进动时的频率、自旋质点的角速度与外加磁场的关系可用
16、的关系可用Larmor方程表示:方程表示:=2 v=B0 (4.4)v=/2 B0(4.5)式中:式中:角速度;角速度;v 进动频率(回旋频率);进动频率(回旋频率);旋磁比(特征性常数)旋磁比(特征性常数)19由由Larmor方程表明,自旋核的方程表明,自旋核的进动频进动频率与外加磁场强度成正比率与外加磁场强度成正比。当外加磁场强。当外加磁场强度度B0 增加时,核的回旋角速度增大,其回增加时,核的回旋角速度增大,其回旋频率也增加。对旋频率也增加。对1H核来说,当磁场强度核来说,当磁场强度B0为为1.4092T(1T=104)高斯时,所产生的回高斯时,所产生的回旋频率旋频率v为为60兆赫(兆赫
17、(=26.753107 radT1s1););B0为为2.3487T高斯时,所高斯时,所产生的回旋频率产生的回旋频率v为为100兆赫。兆赫。20 已知核从低能级自旋态向高能态跃迁时,需要已知核从低能级自旋态向高能态跃迁时,需要一定能量,通常,这个能量可由照射体系用的一定能量,通常,这个能量可由照射体系用的电磁辐射来供给。如果用一频率为电磁辐射来供给。如果用一频率为射的电磁波射的电磁波照射磁场中的照射磁场中的1H核时,电磁波的能量为核时,电磁波的能量为 E射射=h v射射核跃迁与电磁辐射核跃迁与电磁辐射(核磁共振核磁共振)21 当当电磁波的频率与该核的回旋频率电磁波的频率与该核的回旋频率回相等时
18、,回相等时,电磁波的能量就会被吸收电磁波的能量就会被吸收,核的自旋取向就会核的自旋取向就会由低能态跃迁到高能态,即发生核磁共振由低能态跃迁到高能态,即发生核磁共振。此。此外外E射射=E,所以发生核磁共振的条件是,所以发生核磁共振的条件是:或或 可见射频频率与磁场强度可见射频频率与磁场强度B0是成正比的,在进是成正比的,在进行核磁共振实验时,所用磁场强度越高,发生行核磁共振实验时,所用磁场强度越高,发生核磁共振所需的射频频率越高。核磁共振所需的射频频率越高。22 前面讨论的是单个自旋核在磁场中的行为,而实际测定前面讨论的是单个自旋核在磁场中的行为,而实际测定中,观察到的是大量自旋核组成的体系。一
19、组中,观察到的是大量自旋核组成的体系。一组1H核在磁场核在磁场作用下能级被一分为二,如果这些核平均分布在高低能态,作用下能级被一分为二,如果这些核平均分布在高低能态,也就是说,也就是说,由低能态吸收能量跃迁到高能态和高能态释放由低能态吸收能量跃迁到高能态和高能态释放出能量回到低能态的速度相等时,就不会有静吸收,也测出能量回到低能态的速度相等时,就不会有静吸收,也测不出核磁共振信号不出核磁共振信号。但事实上,在热力学温度。但事实上,在热力学温度0K时,全部时,全部1H核都处于低能态(取顺磁方向),而在常温下,由于热核都处于低能态(取顺磁方向),而在常温下,由于热运动使一部分的运动使一部分的1H核
20、处于高能态(取反磁方向),在一定核处于高能态(取反磁方向),在一定温度下处于高低能态的核数会达到一个热平衡。处于低能温度下处于高低能态的核数会达到一个热平衡。处于低能态的核和处于高能态的核的分布,可由玻尔兹曼分配定律态的核和处于高能态的核的分布,可由玻尔兹曼分配定律算出。例如算出。例如B0=1.4092T,T=300K时,则时,则:核的自旋弛豫核的自旋弛豫23 式中:式中:N+处于低能态核的数目;处于低能态核的数目;N-处于高能态核的数目;处于高能态核的数目;E 高低能态的能量差;高低能态的能量差;K 玻耳兹曼常数;玻耳兹曼常数;T 热力学温度。热力学温度。24 对于氢核,对于氢核,处于低能态
21、的核比高能态的核稍多一点处于低能态的核比高能态的核稍多一点,约百,约百万分之十左右。也就是说,在万分之十左右。也就是说,在1 000 000个氢核中,低能态的个氢核中,低能态的核仅比高能态的核多十个左右,核仅比高能态的核多十个左右,而而NMR信号就是靠这极弱量信号就是靠这极弱量过剩的低能态氢核产生的过剩的低能态氢核产生的。如果低能态的核吸收电磁波能量。如果低能态的核吸收电磁波能量向高能态跃迁的过程连续下去,那么这极微量过剩的低能态向高能态跃迁的过程连续下去,那么这极微量过剩的低能态氢核就会减少,吸收信号的强度也随之减弱。最后低能态与氢核就会减少,吸收信号的强度也随之减弱。最后低能态与高能态的核
22、数趋于相等,使吸收信号完全消失,这时发生高能态的核数趋于相等,使吸收信号完全消失,这时发生“饱和饱和”现象。但是,现象。但是,若较高能态的核能够及时回复到较低能若较高能态的核能够及时回复到较低能态,就可以保持稳定信号态,就可以保持稳定信号。由于核磁共振中氢核发生共振时。由于核磁共振中氢核发生共振时吸收的能量吸收的能量E是很小的,是很小的,因而跃迁到高能态的氢核不可能因而跃迁到高能态的氢核不可能通过发射谱线的形式失去能量返回到低能态通过发射谱线的形式失去能量返回到低能态(如发射光谱那(如发射光谱那样),样),这种由高能态回复到低能态而不发射原来所吸收的能这种由高能态回复到低能态而不发射原来所吸收
23、的能量的过程称为驰豫(量的过程称为驰豫(relaxation)过程)过程25驰豫过程可分为两种:自旋驰豫过程可分为两种:自旋晶格驰豫和自旋晶格驰豫和自旋自旋驰豫自旋驰豫(1)自旋)自旋晶格驰豫(晶格驰豫(spin-lattice relaxation):自旋):自旋晶格驰晶格驰豫也称为纵向驰豫,豫也称为纵向驰豫,是处于高能态的核自旋体系与其周围的环境是处于高能态的核自旋体系与其周围的环境之间的能量交换过程之间的能量交换过程。当一些核由高能态回到低能态时,其能量。当一些核由高能态回到低能态时,其能量转移到周围的粒子中去,对固体样品,则传给晶格,如果是液体转移到周围的粒子中去,对固体样品,则传给晶
24、格,如果是液体样品,则传给周围的分子或溶剂。自旋样品,则传给周围的分子或溶剂。自旋晶格驰豫的结果使高能晶格驰豫的结果使高能态的核数减少,低能态的核数增加,全体核的总能量下降。态的核数减少,低能态的核数增加,全体核的总能量下降。一个体系通过自旋一个体系通过自旋晶格驰豫过程达到热平衡状态所需时间,晶格驰豫过程达到热平衡状态所需时间,通常用半衰期通常用半衰期T1表示,表示,T1是处于高能态核寿命的一个量度。是处于高能态核寿命的一个量度。T1越越小,表明驰豫过程的效率越高,小,表明驰豫过程的效率越高,T1越大,则效率越低,容易达到越大,则效率越低,容易达到饱和。饱和。T1的大小与核的种类,样品的状态,
25、温度有关。固体样品的大小与核的种类,样品的状态,温度有关。固体样品的振动、转动频率较小,不能有效地产生纵向驰豫,的振动、转动频率较小,不能有效地产生纵向驰豫,T1较长,可较长,可以达到几小时。对于气体或液体样品,以达到几小时。对于气体或液体样品,T1一般只有一般只有104102s。26(2)自旋)自旋自旋驰豫(自旋驰豫(spin-spin relaxation):自):自旋旋自旋驰豫亦称横向驰豫,自旋驰豫亦称横向驰豫,一些高能态的自一些高能态的自旋核把能量转移给同类的低能态核,同时一些旋核把能量转移给同类的低能态核,同时一些低能态的核获得能量跃迁到高能态,因而各种低能态的核获得能量跃迁到高能态
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有机 波谱 分析 04 核磁共振
限制150内