傅里叶变换红外光谱仪.ppt
《傅里叶变换红外光谱仪.ppt》由会员分享,可在线阅读,更多相关《傅里叶变换红外光谱仪.ppt(44页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、傅里叶变换红外光谱仪傅里叶变换红外光谱仪1.2.红外吸收的产生红外吸收的产生伸缩振动变形振动123456红外吸收的产生红外吸收的产生分子振动的频率分子振动的频率 分子振动过程中,同一类型的振动频率十分接近,它们总是出现在某一范围内,但是相互又有区别,即所谓特征频率或基团频率。在特征频率区,不同化合物的同一种官能团吸收振动总是出现在一个窄的波数范围内,但不是一个固定波数,具体出现在哪里与基团所处的环境有关。产生红外吸收的条件产生红外吸收的条件红外光谱产生的条件 E红外光=E分子振动或红外光=分子振动红外光与分子之间有偶合作用:分子振动时其偶极矩()必须发生变化,即0。能级跃迁规律:振动量子数(V
2、)变化为1时,跃迁几率最大。从基态(V=0)到第一振动激发态(V=1)的跃迁最重要,产生的吸收频率称为基频。1.3.红外光谱的解析红外光谱的解析 分区依据:分区依据:由于有机物数目庞大,而组成有由于有机物数目庞大,而组成有机物的基团有限;基团的振动频率取决于机物的基团有限;基团的振动频率取决于K K 和和 m,同种基团的频率相近。同种基团的频率相近。划分方法划分方法 氢键区氢键区v基团特征频率区基团特征频率区 叁键区和累积双键区叁键区和累积双键区 双键区双键区 v指纹区指纹区 单键区单键区区域名称区域名称 频率范围频率范围基团及振动形式基团及振动形式 氢键区氢键区 40002500cm-1 O
3、H、CH、NH 等的伸缩振动等的伸缩振动 叁键和叁键和 C C、C N、N N和和累积双键区累积双键区 25002000cm-1 CCC、NCO 等的伸缩振动等的伸缩振动 双键区双键区 20001500cm-1 C=O、C=C、C=N、NO2、苯环等的伸缩振动、苯环等的伸缩振动 单键区单键区 1500400cm-1 CC、CO、CN、CX等的伸缩振动及含等的伸缩振动及含 氢基团的弯曲振动。氢基团的弯曲振动。红外吸收峰的类型红外吸收峰的类型基频峰分子吸收一定频率的红外光,若振动能级由基态(n=0)跃迁到第一振动激发(n=1)时,所产生的吸收峰称为基频峰。由于n=1,基频峰的强度一般都较大,因而基
4、频峰是红外吸收光谱上最主要的一类吸收峰。泛频峰包括:倍频峰、合频峰、差频峰,一般都很弱常观测不到。影响基团频率位移的因素影响基团频率位移的因素一一.内部因素内部因素电子效应 诱导效应 共轭效应空间效应 空间位阻 环张力氢键二二.外部因素外部因素物态效应溶剂效应v电子效应电子效应(1)诱诱导导效效应应 通通过过静静电电诱诱导导作作用用使使分分子子中中电电子子云云分分布布发发生生变变化化引引起起K的的改改变变,从从而而影影响振动频率。响振动频率。吸电子诱导效应使羰基吸电子诱导效应使羰基双键性双键性增加,振动频增加,振动频率增大。率增大。如如 CO(2)共轭效应)共轭效应 共轭效应使共轭体系中共轭效
5、应使共轭体系中的电子云密度平均化,即双键键强减小,的电子云密度平均化,即双键键强减小,振动频率红移振动频率红移(减小)。也以减小)。也以 CO为例:为例:空间效应空间效应(1)空间位阻)空间位阻 破坏共轭体系的共平面性,使破坏共轭体系的共平面性,使共轭效应减弱,双键的振动频率蓝移(增大)。共轭效应减弱,双键的振动频率蓝移(增大)。1663cm-1 1686cm-1 1693cm-1(2)环环的的张张力力:环环的的大大小小影影响响环环上上有有关关基基团的频率。团的频率。随着环张力增加,环外基团振动频率蓝移随着环张力增加,环外基团振动频率蓝移(增大),环内基团振动频率红移(减小)。(增大),环内基
6、团振动频率红移(减小)。v 氢键氢键 氢键的形成使原有的化学键氢键的形成使原有的化学键OH或或NH的键长增的键长增大,力常数大,力常数K 变小,振动频率红移。变小,振动频率红移。氢键的形成对吸收峰的影响:氢键的形成对吸收峰的影响:吸收峰展宽吸收峰展宽 氢键形成程度不同,对力常数的影响不同,使得吸收氢键形成程度不同,对力常数的影响不同,使得吸收频率有一定范围。频率有一定范围。氢键形成程度与测定条件有关。氢键形成程度与测定条件有关。吸收强度增大吸收强度增大形成氢键后,相应基团的振动偶极矩变化增大,因此形成氢键后,相应基团的振动偶极矩变化增大,因此吸收强度增大。吸收强度增大。癸酸的红外光谱图癸酸的红
7、外光谱图游离羧酸的游离羧酸的 C=O约为约为1760cm-1,而缔合状态(如固、,而缔合状态(如固、液体时),因氢键作用液体时),因氢键作用 C=O移到移到1700 cm-1附近。附近。外部因素 物态效应物态效应,物质处于气态时,分子间作用力小,吸收频率就高,处于液态时,分子间作用力增大,吸收频率就低。如丙酮的C=O气态时为1738cm-1,在液态时为1715cm-1.溶剂效应溶剂效应,极性基团的伸缩振动频率随溶剂的极性增大而降低,但其吸收峰强度往往增强,通常是因为极性基团和极性溶剂之间形成氢键的缘故,形成氢键的能力越强吸收带的频率就越低。如丙酮在环己烷中C=O为1727cm-1,在四氯化碳中
8、为1720cm-1 ,在氯仿中为1705cm-1。分子振动的自由度分子振动的自由度简正振动的数目称为振动自由度,每个振动自由度相当于红外光谱图上一个基频吸收带。非直线型分子振动形式应有(3n-6)种。直线型分子,直线性分子的振动形式为(3n-5)种。但是实际上,绝大多数化合物在红外光谱图上出现的峰数远小于理论上计算的振动数。吸收峰减少的原因吸收峰减少的原因分子的一些振动没有偶极矩变化,是红外非活性的;不同振动方式的频率相同,发生简并;一些振动的频率十分接近,仪器无法分辨;一些振动的频率超出了仪器可检测的范围。影响吸收峰强度的因素影响吸收峰强度的因素红外吸收谱带的强度取决于分子振动时偶极矩的变化
9、,而偶极矩与分子结构的对称性有关。极性较强的基团(如C=O,C-X等)振动,吸收强度较大;极性较弱的基团(如C=C、C-C、N=N等)振动,吸收较弱。另一个主要的影响因素是分子跃迁几率,处于激发态的分子占分子总数的百分数越高,产生的红外吸收峰强度越大。2.仪器简介仪器简介产品名称 傅里叶变换红外光谱仪型号名称 IRAffinity-1制造商 岛津公司 傅里叶变换红外吸收仪傅里叶变换红外吸收仪Fourier变换红外光谱仪主要由光源、Michelson 干涉仪、检测器、计算机和记录仪组成。傅里叶变换红外光谱仪的工作原理图傅里叶变换红外光谱仪的工作原理图迈克尔逊红外干涉仪原理图迈克尔逊红外干涉仪原理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 傅里叶变换 红外 光谱仪
限制150内