工程力学专业英语翻译.ppt
《工程力学专业英语翻译.ppt》由会员分享,可在线阅读,更多相关《工程力学专业英语翻译.ppt(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Translation The concepts of stress and strain can be illustrated in an elementary way by considering the extension of a prismatic bar.As shown in Fig.1,a prismatic bar is one that has constant cross section throughout its length and a straight axis.In this illustration the bar is assumed to be loade
2、d at its ends by axial forces P that produce a uniform stretching,or tension,of the bar.应应力力和和应应变变的的概概念念可可以以通通过过考考虑虑一一根根矩矩形形梁梁的的拉拉伸伸的的简简单单方方法法来来举举例例说说明明。如如图图1所所示示,这这根根矩矩形形梁梁可可以以看看作作是是由由遍遍及及长长度度方方向向的的连连续续横横截截面面所所组组成成,这这些些横横截截面面垂垂直直于于它它的的轴轴向向。在在这这个个例例子子中中,这这根根矩矩形形梁梁被被假假定定在在它它两两端端施施加加了了一一对对使使它它发发生生均均匀匀
3、拉拉伸的轴向力伸的轴向力P。By making an artificial cut(section mm)through the bar at right angles to its axis,we can isolate part of the bar as a free body see Fig.1(b).At the left-hand end the tensile force P is applied,and at the other end there are forces representing the action of the removed portion of the
4、bar upon the part that remains.These forces will be continuously distributed over the part cross section,analogous to the continuous distribution of hydrostatic pressure over a submerged surface.假假设设在在梁梁的的轴轴向向上上做做一一个个垂垂直直截截面面(截截面面mm),可可以以分分离离出出一一部部分分自自由由的的梁梁见见图图1(b)。在在该该梁梁的的左左端端,有有拉拉力力P,而而在在另另一一端端有有
5、相相应应的的力力可可以以替替代代梁梁的的分分离离部部分分对对它它的的作作用用。这这些些力力连连续续分分布在横截面上,类似于在水平面下的静水压力的连续分布。布在横截面上,类似于在水平面下的静水压力的连续分布。The intensity of force,that is,the force per unit area,is called the stress and is commonly denoted by the Greek letter.Assuming that the stress has a uniform distribution over the cross section se
6、e Fig.1(b),we can readily see that its resultant is equal to the intensity times the cross-sectional area A of the bar.Furthermore,from the equilibrium of the body shown in Fig.1(b),we can also see that this resultant must be equal in magnitude and opposite in direction to the force P.Hence,we obtai
7、n =P/A.(1)力力的的强强度度,也也就就是是说说单单位位面面积积上上的的力力,被被称称为为应应力力,通通常常用用希希腊腊字字母母来来表表示示。假假定定应应力力在在横横截截面面上上均均匀匀分分布布见见图图1(b),那那么么我我们们可可以以很很容容易易的的看看出出它它的的合合力力等等于于强强度度乘乘以以梁梁的的横横截截面面积积A。而而且且,从从图图1上上显显示示的的物物体体的的平平衡衡来来看看,我我们们可可以以发发现现这这个个合合力力是是跟跟拉拉力力P在在数数值值上上相相等等,方方向向相相反反的的。因因此此,我我们们得得到到方方程(程(1)=P/A。Eq.(1)can be regarded
8、 as the equation for the uniform stress in a prismatic bar.This equation shown that stress has units of force divided by area.When the bar is being stretched by the force P,as shown in the figure,the resulting stress is a tensile stress;if the forces are reversed in direction,causing the bar to be c
9、ompressed,they are called compressive stress.方方程程(1)用用于于求求解解在在梁梁中中均均匀匀分分布布的的应应力力问问题题。它它表表示示了了应应力力的的单单位位是是力力除除以以面面积积。正正如如我我们们在在图图1中中所所看看到到的的,当当梁梁被被力力P拉拉伸伸的的时时候候,生生成成的的应应力力是是拉拉应应力力;如如果果力力的的方方向向被被颠颠倒倒,导导致致梁梁被压缩时,产生的应力被称为压应力。被压缩时,产生的应力被称为压应力。A necessary condition for Eq.(1)to be valid is that the stress
10、 must be uniform over the cross section of the bar.This condition will be realized if the axial force P acts through the centroid of the cross section.When the load P does not act at the centroid,bending of the bar will result,and a more complicated analysis is necessary.At present,however,it is ass
11、umed that all axial forces are applied at the centroid of the cross section unless specifically stated to the contrary.Also,unless stated otherwise,it is generally assumed that the weight of the object itself is neglected,as was done when discussing the bar in Fig.1.方方程程(1)成成立立的的必必要要条条件件是是应应力力在在梁梁的的
12、横横截截面面上上是是均均匀匀分分布布的的。如如果果轴轴向向力力P通通过过横横截截面面的的形形心心,那那么么这这个个条条件件是是可可以以实实现现的的。如如果果轴轴向向力力P不不通通过过横横截截面面的的形形心心,则则会会导导致致梁梁的的弯弯曲曲,必必须须经经过过更更复复杂杂的的分分析析。然然而而,目目前前除除非非特特定定说说明明,都都假假定定所所有有的的轴轴向向力力都都通通过过横横截截面面的的形形心心。同同样样,除除非非是是另另外外说说明明,一一般般我我们们不考虑物体自重,正如我们在图不考虑物体自重,正如我们在图1中讨论的梁一样。中讨论的梁一样。The total elongation of a
13、bar carrying an axial force will be denoted by the Greek letter see Fig.1(a),and the elongation per unit length,or strain,is then determined by the equation=/L(2).Where L is the total length of the bar.Note that the strain is a non-dimensional quantity.It can be obtained accurately from Eq.(2)as lon
14、g as the strain is uniform throughout the length of the bar.If the bar is in tension,the strain is a tensile strain,representing an elongation or stretching of the material;if the bar is in compression,the strain is a compressive strain,which means that adjacent cross section of the bar move closer
15、to one another.在在轴轴向向力力作作用用下下,梁梁的的总总伸伸长长用用希希腊腊字字母母来来表表示示见见图图1(a),单单位位伸伸长长量量或或者者说说应应变变将将由由方方程程(2)决决定定,这这里里L是是指指梁梁的的总总长长度度。注注意意,这这里里应应变变是是一一个个无无量量纲纲量量,只只要要应应变变在在梁梁的的长长度度上上各各处处是是均均匀匀的的,那那么么它它可可以以通通过过方方程程(2)精精确确获获得得。如如果果梁梁被被拉拉伸伸,那那么么得得到到拉拉应应变变,表表现现为为材材料料的的延延长长或或者者拉拉伸伸;如如果果梁梁被被压压缩缩,那么得到压应变,意味着梁的横截面将彼此更加靠
16、近。那么得到压应变,意味着梁的横截面将彼此更加靠近。When a material exhibits a linear relationship between stress and strain,it is said to be linear elastic.This is an extremely important property of many solid materials,including most metals,plastics,wood,concrete,and ceramics.The linear relationship between stress and stra
17、in for a bar in tension can be expressed by the simple equation=E(3)in which E is a constant of proportionality known as the modulus of elasticity for the material.当当一一种种材材料料的的应应力力与与应应变变表表现现出出线线性性关关系系时时,我我们们称称这这种种材材料料为为线线弹弹性性材材料料。这这是是许许多多固固体体材材料料的的一一个个极极其其重重要要的的性性质质,这这些些材材料料包包括括大大多多数数金金属属,塑塑料料,木木材材,
18、混混凝凝土土和和陶陶瓷瓷。对对于于被被拉拉伸伸的的梁梁来来说说,这这种种应应力力与与应应变变之之间间的的线线性性关关系系可可以以用用简简单单方方程程(3)=E 来来表表示示,这这里里E是是一一个个已已知知的的比比例例常常数数,即即该该材材料料的的弹弹性性模模量。量。Note that E has the same units as stress.The modulus of elasticity is sometimes called Youngs modulus,after the English scientist Thomas Young(1773-1829)who studied th
19、e elastic behavior of bars.For most materials the modulus of elasticity in compression is the same as in tension.注注意意,弹弹性性模模量量的的单单位位跟跟应应力力的的单单位位相相同同。在在研研究究梁梁的的弹弹性性行行为为的的英英国国科科学学家家Thomas Young(1773-1829)出出现现之之后后,弹弹性性模模量量有有时时也也被被称称为为杨杨氏氏模模量量。对对大大多多数数材材料料而而言言,压压缩缩和和拉拉伸伸时时的的弹性模量是一样的。弹性模量是一样的。Translation
20、 The relationship between stress and strain in a particular material is determined by means of a tensile test.A specimen of the material,usually in the form of a round bar,is placed in a testing machine and subjected to tension.The force on the bar and the elongation of the bar are measured as the l
21、oad is increased.The stress in the bar is found by dividing the force by the cross-sectional area,and the strain is found by dividing the elongation by the length along which the elongation occurs.In this manner a complete stress-strain diagram can be obtained for the material.一一种种材材料料的的应应力力-应应变变关关系
22、系可可以以通通过过一一个个拉拉伸伸测测试试来来确确定定。材材料料的的样样品品通通常常做做成成圆圆棒棒状状,放放置置在在测测试试仪仪器器上上然然后后施施加加拉拉力力。随随着着载载荷荷的的增增加加,圆圆棒棒受受的的力力和和伸伸长长量量可可以以被被测测定定。圆圆棒棒的的应应力力可可以以通通过过力力除除以以横横截截面面积积得得到到,应应变变则则通通过过伸伸长长量量除除以以圆圆棒棒的的长长度度得到。这样,我们就得到了这种材料完整的应力得到。这样,我们就得到了这种材料完整的应力-应变图表。应变图表。The typical shape of the stress-strain diagram for str
23、uctural steel is shown in Fig.1,where the axial strains are plotted on the horizontal axis and the corresponding stresses are given by the ordinates to the curve OABCDE.From O to A the stress and the strain are directly proportional to one another and the diagram is linear.Beyond point A the linear
24、relationship between stress and strain no longer exists,hence the stress at A is called the proportional limit.图图1是是结结构构钢钢的的经经典典应应力力-应应变变图图,图图中中横横坐坐标标表表示示轴轴向向的的应应变变,跟跟通通过过纵纵坐坐标标表表示示的的相相应应的的应应力力一一起起形形成成曲曲线线OABCDE。从从O到到A这这一一段段,应应力力和和应应变变彼彼此此成成正正比比关关系系,图图形形是是成成线线性性的的。超超过过A点点以以后后,应应力力和和应应变变的的线线性性关关系系不不再
25、再存存在在,因因此此A点点的的应应力力被被称为比例极限。称为比例极限。With an increase in loading,the strain increases more rapidly than the stress,until at point B a considerable elongation begins to occur with no appreciable increase in the tensile force.This phenomenon is known as yielding of the material,and the stress at point B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程力学 专业 英语翻译
限制150内