《无约束优化》PPT课件.ppt
《《无约束优化》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《无约束优化》PPT课件.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第四章无约束优化方法第一节 概述从第一章列举的机械设计问题,大多数实际问题是约束优化问题。约束优化问题的求解转化为一系列的无约束优化问题实现的。因此,无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。无约束优化问题的极值条件解析法数值法数学模型复杂时不便求解可以处理复杂函数及没有数学表达式的优化设计问题搜索方向问题是无约束优化方法的关键。各种无约束优化方法的区别:确定搜索方向的方法不同。无约束优化方法分类利用目标函数的一阶或二阶导数利用目标函数值(最速下降法、共轭梯度法、牛顿法)(坐标轮换法、鲍威尔等)第二节 最速下降法优化设计追求目标函数值最小,若搜索方向取该点的负梯度方
2、向,使函数值在该点附近的范围内下降最快。按此规律不断走步,形成以下迭代算法:以负梯度方向为搜索方向,所以称最速下降法或梯度法。搜索方向确定为负梯度方向,还需确定步长因子即求一维搜索的最佳步长,既有由此可知,在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负梯度方向,因此相邻两个搜索方向互相垂直。例4-1 求目标函数的极小点。第三节牛顿型方法在第三章中,我们已经讨论了一维搜索的牛顿方法。得出一维情况下的牛顿迭代公式对于多元函数,在泰勒展开,得设为函数的极小点,根据极值的必要条件这是多元函数求极值的牛顿法迭代公式。例4-2 用牛顿法求的极小值。对牛顿法进行改进,提出“阻尼牛顿法”
3、第四节共轭方向及共轭方向法为了克服最速下降法的锯齿现象,提高收敛速度,发展了一类共轭方向法。搜索方向是共轭方向。一、共轭方向的概念共轭方向的概念是在研究二次函数时引出的。首先考虑二维情况如果按最速下降法,选择负梯度方向为搜索方向,会产生锯齿现象。为避免锯齿的发生,取下一次的迭代搜索方向直接指向极小点,如果选定这样的搜索方向,对于二元二次函数只需进行两次直线搜索就可以求到极小点。应满足什么条件?对于二次函数 在 处取得极小点的必要条件等式两边同乘 得是对G的共轭方向。三、共轭方向法1、选定初始点 ,下降方向 和收敛精度,k=0。2、沿 方向进行一维搜索,得3、判断 是否满足,若满足则打印否则转4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 无约束优化 无约束 优化 PPT 课件
限制150内