2018年度高考'一轮预习复习统计概率专题栏目.doc





《2018年度高考'一轮预习复习统计概率专题栏目.doc》由会员分享,可在线阅读,更多相关《2018年度高考'一轮预习复习统计概率专题栏目.doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017 高考一轮复习高考一轮复习 统计概率专题统计概率专题一解答题(共一解答题(共 16 小题)小题) 1 (2016山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语, 在一轮活动中,如果两人都猜对,则“星队”得 3 分;如果只有一个人猜对,则“星队”得 1分;如果两人都没猜对,则“星队”得 0 分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响各轮结果亦互不影响假设“星队”参加两轮活动,求: (I) “星队”至少猜对 3 个成语的概率; (II) “星队”两轮得分之和为 X 的分布列和数学期望 EX 2 (2016天津)某小组共 10 人
2、,利用假期参加义工活动,已知参加义工活动次数为 1,2,3 的人数分别为 3,3,4,现从这 10 人中随机选出 2 人作为该组代表参加座谈会 (1)设 A 为事件“选出的 2 人参加义工活动次数之和为 4”,求事件 A 发生的概率; (2)设 X 为选出的 2 人参加义工活动次数之差的绝对值,求随机变量 X 的分布列和数学 期望 3 (2016河北区三模)集成电路 E 由 3 个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有 2 个正常工作,则 E 能正常工作,否则就需要维修,且维修集成 电路 E 所需费用
3、为 100 元 ()求集成电路 E 需要维修的概率; ()若某电子设备共由 2 个集成电路 E 组成,设 X 为该电子设备需要维修集成电路所需 的费用,求 X 的分布列和期望 4 (2016唐山一模)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一 种, 方案一:每满 200 元减 50 元: 方案二:每满 200 元可抽奖一次具体规则是依次从装有 3 个红球、1 个白球的甲箱,装 有 2 个红球、2 个白球的乙箱,以及装有 1 个红球、3 个白球的丙箱中各随机摸出 1 个球, 所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别) 红球个数3210 实际付款半价7 折8 折原价
4、 ()若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率; ()若某顾客购物金额为 320 元,用所学概率知识比较哪一种方案更划算? 5 (2016武汉校级模拟)某学校研究性学习小组对该校高三学生视力情况进行调查,在高 三的全体 1000 名学生中随机抽取了 100 名学生的体检表,并得到如图的频率分布直方图 (1)若直方图中后四组的频数成等差数列,试估计全年级视力在 5.0 以下的人数; (2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学 习成绩是否有关系,对年级名次在 150 名和 9511000 名的学生进行了调查,得到右表 中数据,根据表中
5、的数据, 年级名次 是否近视1509511000近视4132 不近视918 能否在犯错的概率不超过 0.05 的前提下认为视力与学习成绩有关系? (3)在(2)中调查的 100 名学生中,按照分层抽样在不近视的学生中抽取了 9 人,进一 步调查他们良好的护眼习惯,并且在这 9 人中任取 3 人,记名次在 150 的学生人数为 X,求 X 的分布列和数学期望 附:P(K2k )0.100.050.0250.0100.005k2.7063.8415.0246.6357.8796 (2016海南校级模拟)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量 越好,记其质量指标为 k,当 k85
6、时,产品为一级品;当 75k85 时,产品为二级品; 当 70k75 时,产品为三级品现用两种新配方(分别称为 A 配方和 B 配方)做实验, 各生产了 100 件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(以下 均视频率为概率) A 配方的频数分布表 B 配方的频数分布表 指 标 值 分 组75, 80)80, 85)85, 90)90, 95)指 标 值 分 组75, 80)80, 85)85, 90)90, 95)75, 80)频 数10304020频 数510154030(1)若从 B 配方产品中有放回地随机抽取 3 件,记“抽出的 B 配方产品中至少 1 件二级品”
7、为事件 C,求事件 C 的概率 P(C) ;(2)若两种新产品的利润率与质量指标值 k 满足如下关系:y=(其中t) ,从长期来看,投资哪种配方的产品平均利润率较大?7 (2016兴庆区校级二模)袋中装有围棋黑色和白色棋子共 7 枚,从中任取 2 枚棋子都是白色的概率为现有甲、乙两人从袋中轮流摸取一枚棋子甲先摸,乙后取,然后甲再取,取后均不放回,直到有一人取到白棋即终止每枚棋子在每一次被摸出的机会都 是等可能的用 X 表示取棋子终止时所需的取棋子的次数 (1)求随机变量 X 的概率分布列和数学期望 E(X) ; (2)求甲取到白球的概率 8 (2016海口模拟)汽车租赁公司为了调查 A,B 两
8、种车型的出租情况,现随机抽取了这 两种车型各 100 辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表: A 型车 出租天数1234567 车辆数51030351532 B 型车 出租天数1234567 车辆数1420201615105 ( I)从出租天数为 3 天的汽车(仅限 A,B 两种车型)中随机抽取一辆,估计这辆汽车 恰好是 A 型车的概率; ()根据这个星期的统计数据,估计该公司一辆 A 型车,一辆 B 型车一周内合计出租天 数恰好为 4 天的概率; ()如果两种车型每辆车每天出租获得的利润相同,该公司需要从 A,B 两种车型中购 买一辆,请你根据所学的统计知识,给出建议
9、应该购买哪一种车型,并说明你的理由 9 (2016大连二模)甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况,每一局甲胜的概率为,乙胜的概率为,如果比赛采用“五局三胜制”(先胜三局者获胜,比赛结束) (1)求甲获得比赛胜利的概率; (2)设比赛结束时的局数为 X,求随机变量 X 的分布列和数学期望 10 (2016泰安二模)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校 200 名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数 据分成0,10) ,10,20) ,20,30) ,30,40) ,40,50) ,50,60)六组,并作出频 率
10、分布直方图(如图) 将日均课外体育锻炼时间不低于 40 分钟的学生评价为“课外体育达 标” (1)请根据直方图中的数据填写下面的 22 列联表,并通过计算判断是否能在犯错误的 概率不超过 0.01 的前提下认为“课外体育达标”与性别有关? 课外体育不达标课外体育达标合计 男60_ 女_110 合计_ (2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取 12 人,再从这 12 名 学生中随机抽取 3 人参加体育知识问卷调查,记“课外体育达标”的人数为 ,求 得分布列 和数学期望附参考公式与数据:K2=P(K2k0)0.100.050.0100.0050.001 k02.7063.
11、8416.6357.87910.82811 (2016辽宁校级模拟)语文成绩服从正态分布 N(100,17.52) ,数学成绩的频率分布 直方图如图,如果成绩大于 135 的则认为特别优秀 (1)这 500 名学生中本次考试语文、数学特别优秀的大约各多少人? (2)如果语文和数学两科都特别优秀的共有 6 人, 从(1)中的这些同学中随机抽取 3 人,设三人中两科都特别优秀的有 x 人,求 x 的分布列 和数学期望 (附公式及表)若 xN(,2) ,则 P(x+)=0.68,P(2x+2)=0.9612 (2016潮南区模拟)某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大 于或等于 8
12、2 为合格品,小于 82 为次品现随机抽取这两种芯片各 100 件进行检测,检测 结果统计如表: 测试指标70,76)76,82)82,88)88,94)94,100 芯片甲81240328 芯片乙71840296 (I)试分别估计芯片甲,芯片乙为合格品的概率; ()生产一件芯片甲,若是合格品可盈利 40 元,若是次品则亏损 5 元;生产一件芯片乙, 若是合格品可盈利 50 元,若是次品则亏损 10 元在(I)的前提下, (i)记 X 为生产 1 件芯片甲和 1 件芯片乙所得的总利润,求随机变量 X 的分布列和数学 期望; (ii)求生产 5 件芯片乙所获得的利润不少于 140 元的概率 13
13、 (2016石嘴山校级一模)在一次考试中,5 名同学数学、物理成绩如表所示: 学生A B C D E 数学(x 分)8 99 19 39 59 7物理(y 分)8 78 98 99 29 3(1)根据表中数据,求物理分 y 对数学分 x 的回归方程: (2)要从 4 名数学成绩在 90 分以上的同学中选出 2 名参加一项活动,以 X 表示选中的同 学中物理成绩高于 90 分的人数,求随机变量 X 的分布列及数学期望 E(X) ( 附:回归方程中,)14 (2016重庆模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店 1 月份中 5 天的日营业额 y(单位:千元)与该地当日最低气温 x(
14、单位:)的数据,如表:x2 5 8911y121 0887()求 y 关于 x 的回归方程=x+;()判定 y 与 x 之间是正相关还是负相关;若该地 1 月份某天的最低气温为 6,用所 求回归方程预测该店当日的营业额()设该地 1 月份的日最低气温 XN(,2) ,其中 近似为样本平均数 ,2近似为 样本方差 s2,求 P(3.8X13.4)附:回归方程=x+中,=,= b 3.2,1.8若 XN(,2) ,则 P(X+)=0.6826,P(2X+2)=0.954415 (2016 春抚州校级月考)西安世园会志愿者招骋正如火如荼进行着,甲、乙、丙三名大学生跃跃欲试,已知甲能被录用的概率为,甲
15、、乙两人都不能被录用的概率为,乙、丙两人都能被录用的概率为(1)乙、丙两人各自能被录用的概率; (2)求甲、乙、丙三人至少有两人能被录用的概率 16 (2016东城区模拟)某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为 12345P0.40.20.20.10.1商场经销一件该商品,采用 1 期付款,其利润为 200 元;分 2 期或 3 期付款,其利润为 250 元;分 4 期或 5 期付款,其利润为 300 元, 表示经销一件该商品的利润()求事件 A:“购买该商品的 3 位顾客中,至少有 1 位采用 1 期付款”的概率 P(A) ; ()求 的分布列及期望 E2017
16、高考一轮复习高考一轮复习 统计概率专题统计概率专题参考答案与试题解析参考答案与试题解析一解答题(共一解答题(共 16 小题)小题) 1 (2016山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语, 在一轮活动中,如果两人都猜对,则“星队”得 3 分;如果只有一个人猜对,则“星队”得 1分;如果两人都没猜对,则“星队”得 0 分已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响各轮结果亦互不影响假设“星队”参加两轮活动,求: (I) “星队”至少猜对 3 个成语的概率; (II) “星队”两轮得分之和为 X 的分布列和数学期望 EX 【分析】 (
17、I) “星队”至少猜对 3 个成语包含“甲猜对 1 个,乙猜对 2 个”, “甲猜对 2 个,乙猜 对 1 个”, “甲猜对 2 个,乙猜对 2 个”三个基本事件,进而可得答案; (II)由已知可得:“星队”两轮得分之和为 X 可能为:0,1,2,3,4,6,进而得到 X 的 分布列和数学期望 【解答】解:(I) “星队”至少猜对 3 个成语包含“甲猜对 1 个,乙猜对 2 个”, “甲猜对 2 个, 乙猜对 1 个”, “甲猜对 2 个,乙猜对 2 个”三个基本事件,故概率 P=+=+=,(II) “星队”两轮得分之和为 X 可能为:0,1,2,3,4,6,则 P(X=0)=,P(X=1)=
18、2+=,P(X=2)=+=,P(X=3)=2=,P(X=4)=2+=P(X=6)=故 X 的分布列如下图所示:X 012 3 4 6P数学期望 EX=0+1+2+3+4+6=【点评】本题考查离散型随机变量的分布列和数学期望,属中档题2 (2016天津)某小组共 10 人,利用假期参加义工活动,已知参加义工活动次数为 1,2,3 的人数分别为 3,3,4,现从这 10 人中随机选出 2 人作为该组代表参加座谈会 (1)设 A 为事件“选出的 2 人参加义工活动次数之和为 4”,求事件 A 发生的概率; (2)设 X 为选出的 2 人参加义工活动次数之差的绝对值,求随机变量 X 的分布列和数学 期
19、望 【分析】 (1)选出的 2 人参加义工活动次数之和为 4 为事件 A,求出选出的 2 人参加义工 活动次数之和的所有结果,即可求解概率则 P(A) (2)随机变量 X 的可能取值为 0,1,2,3 分别求出 P(X=0) ,P(X=1) ,P(X=2) , P(X=3)的值,由此能求出 X 的分布列和 EX【解答】解:(1)从 10 人中选出 2 人的选法共有=45 种,事件 A:参加次数的和为 4,情况有:1 人参加 1 次,另 1 人参加 3 次,2 人都参加 2 次;共有+=15 种,事件 A 发生概率:P=()X 的可能取值为 0,1,2P(X=0)=P(X=1)=,P(X=2)=
20、,X 的分布列为: X012PEX=0+1+2=1【点评】本题考查离散型随机变量的分布列和数学期望,是中档题,在历年的高考中都是 必考题型解题时要认真审题,仔细解答,注意古典概型的灵活运用3 (2016河北区三模)集成电路 E 由 3 个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有 2 个正常工作,则 E 能正常工作,否则就需要维修,且维修集成 电路 E 所需费用为 100 元 ()求集成电路 E 需要维修的概率; ()若某电子设备共由 2 个集成电路 E 组成,设 X 为该电子设备需要维修集成电路所需 的
21、费用,求 X 的分布列和期望 【分析】 ()由条件利用相互独立事件的概率乘法公式求得 3 个元件都不能正常工作的概率 P1 的值,3 个元件中的 2 个不能正常工作的概率 P2 的值,再把 P1 和 P2相加,即得所 求()设 为维修集成电路的个数,则 服从 B(2,) ,求得 P(X=100)=P(=k) 的值,可得 X 的分布列,从而求得 X 的期望 【解答】解:()三个电子元件能正常工作分别记为事件 A,B,C,则 P(A)=,P(B)=,P(C)=依题意,集成电路 E 需要维修有两种情形:3 个元件都不能正常工作,概率为 P1=P()=P( )P( )P( )=3 个元件中的 2 个不
22、能正常工作,概率为 P2=P(A)+P( B )+P(C)=+=所以,集成电路 E 需要维修的概率为 P1+P2=+=()设 为维修集成电路的个数,则 服从 B(2,) ,而 X=100,P(X=100)=P(=k)=,k=0,1,2X 的分布列为: X0100200PEX=0+100+200=【点评】本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型 随机变量的分布列,属于中档题4 (2016唐山一模)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一 种,方案一:每满 200 元减 50 元: 方案二:每满 200 元可抽奖一次具体规则是依次从装有 3 个红球
23、、1 个白球的甲箱,装 有 2 个红球、2 个白球的乙箱,以及装有 1 个红球、3 个白球的丙箱中各随机摸出 1 个球, 所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别) 红球个数3210实际付款半价7 折8 折原价()若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率; ()若某顾客购物金额为 320 元,用所学概率知识比较哪一种方案更划算? 【分析】 ()先求出顾客获得半价优惠的概率,由此利用对立事件概率计算公式能求出两 个顾客至少一个人获得半价优惠的概率 ()分别求出方案一和方案二和付款金额,由此能比较哪一种方案更划算【解答】解:()记顾客获得半价优惠为事件 A,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年度 高考 39 一轮 预习 复习 统计 概率 专题 栏目

限制150内