《全等角形复习》PPT课件.ppt
《《全等角形复习》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《全等角形复习》PPT课件.ppt(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级上数学:15.2三角形全等的判定(复习)ppt课件三角形全等的条件(复习)知识梳理:1 1:什么是全等三角形?一个三角形经过:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?哪些变化可以得到它的全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?3 3:三角形全等的判定方法有哪些?:三角形全等的判定方法有哪些?能够完全重合的两个三角形叫做全等三角形。能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到一个三角形经过平移、翻折、旋转可以得到它的全等形。它的全等形。(1):全等三角形的对应边相等、对应角相等。):全等三角形的对应边相等、对应角相
2、等。(2):全等三角形的周长相等、面积相等。):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、):全等三角形的对应边上的对应中线、角平分线、高线分别相等。高线分别相等。SSS、SAS、ASA、AAS、HL(RT)方法指引证明两个三角形全等的基本思路:证明两个三角形全等的基本思路:(1):已知两边):已知两边-找第三边找第三边(SSS)找夹角找夹角(SAS)(2):已知一边一角已知一边一角-已知一边和它的邻角已知一边和它的邻角找是否有直角找是否有直角(HL)已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这
3、个角的另一个边(SAS)找这边的对角找这边的对角(AAS)找一角找一角(AAS)已知角是直角,找一边已知角是直角,找一边(HL)(3):已知两角已知两角-找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任意边(AAS)练习例例1:已知:已知AC=FE,BC=DE,点点A,D,B,F在一条直线上,在一条直线上,AD=BF,求证:求证:E=CABDFEC证明:AD=FB AD+DB=BF+DB即AB=FD在在 ABC和和 FDE中中AC=FEBC=DEAB=FDABCFDE(SSS)E=C练习练习1:如图,:如图,AB=AD,CB=CD.求证求证:AC 平分平分 BADADCB证明:在
4、证明:在 ABC和和 ADC中中 AC=AC AB=AD CB=CD ABC ADC (SSS)BAC=DAC AC平分平分 BAD例例2:如图,:如图,AC和和BD相交于点相交于点O,OA=OC,OB=OD 求证:求证:DC AB证明:在证明:在 ABO和和 CDO中中 OA=OC AOB=COD OB=OD ABO CDO(SAS)A=C DC ABAODBC练习练习2:已知,:已知,ABC和和 ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一在一条直线上求证:条直线上求证:BE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将 ABC绕点绕点C旋转一定角度旋转一定
5、角度(大于零度而小于六十度),(大于零度而小于六十度),以上的结论海成立吗?以上的结论海成立吗?证明证明:ABC和和 ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ACE即即 BCE=DCA在在 ACD和和 BCE中中 AC=BC BCE=DCA DC=EC ACDBCE (SAS)BE=AD例例3:如图,:如图,OB AB,OC AC,垂足为垂足为B,C,OB=OCAO平分平分 BAC吗?为什么?吗?为什么?OCBA答:答:AO平分平分 BAC理由:理由:OB AB,OC AC B=C=90 在在Rt ABO和和Rt ACO中中 O
6、B=OC AO=AO Rt ABO Rt ACO (HL)BAO=CAO AO平分平分 BAC 练习练习3:ABC中,中,AD是它的角平分线,且是它的角平分线,且BD=CD,DE、DF 分别垂直分别垂直AB、AC,垂足为,垂足为E、F ,求证:求证:EB=FCFEDCBA证明:证明:AD是角平分线是角平分线 DE AB DF AC DE=DF BED=CFD=90 在在RT BED和和RT CFD中中 DE=DF BD=CD RT BED RT CFD (HL)EB=FC例例4:如图,:如图,D在在AB上,上,E在在AC上,上,AB=AC,B=C,试问试问AD=AE吗?为什么?吗?为什么?ED
7、CBA解解:AD=AE理由:理由:在在 ACD和和 ABE中中 B=C AB=AC A=A ACD ABE (ASA)AD=AE练习练习4:如图,小明不慎将一块三角形模具打碎为如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?那块去合适?为什么?BAAB例例5:已知:已知 AC=DB,1=2.求证求证:A=D21DCBA证明:在ABC和DCB中 AC=DB 1=2 BC=CB ABCDCB (SAS)A=D
8、 练习练习5:如图,已知:如图,已知E在在AB上,上,1=2,3=4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在 EBC和和 EBD中中 1=2 3=4 EB=EB EBC EBD (AAS)BC=BD 在在 ABC和和 ABD中中 AB=AB 1=2 BC=BD ABC ABD (SAS)AC=AD例例6:如图所示,:如图所示,AB与与CD相交于点相交于点O,A=B,OA=OB 添加条件添加条件 所以所以 AOCBOD 理由是理由是 AODCB C=D AOC=BODAASASAEDCBA例例7:如图所示,:如图所示,AB=AD,E
9、=C 要想使要想使 ABCADE可以添加的条可以添加的条件是件是 依据是依据是 EDA=B DAE=BAC BAD=EACAAS例例8:如图,已知:如图,已知AB=CD,DE AC,BF AC,AE=CF 求证:求证:ABFCDEFEDCBA证明:DE AC,BF AC AFB=CED=90 AE=CF AE+EF=CF+EF 即即 AF=CE 在在RT ABF和和RT CDE中中 AF=CE AB=CD RT ABF RT CDE (HL)FEDCBA例例9:如图,已知:如图,已知AC EF,DE BA,若使若使 ABCEDF,还需要补还需要补充的条件可以是充的条件可以是 或或或或或或AB=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等角形复习 全等 角形 复习 PPT 课件
限制150内