《对数对数函数》PPT课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《对数对数函数》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《对数对数函数》PPT课件.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、对数、对数函数对数、对数函数高一数学高一数学主讲教师:田美圣主讲教师:田美圣27 对数对数 一、基础知识要求一、基础知识要求1理解对数的概念,能进行对数式与指数式的互化2掌握对数的运算性质,理解推导对数运算法则的依据和过程,并会用语言叙述法则。从而记住这些法则。3本节的重点是对数的定义,对数的运算性质;难点是对数的概念。二、学法指导:二、学法指导:1定义abNlogaNb(a0且a1)指数与对数对比表 式子:abNlogaNb名称a_幂的底数b_幂的指数N_幂的值a_对数的底数b_以a为底的N的对数N_真数运算性质aman=am+naman=am-n(am)n=amnlogaMN=logaM+
2、logaN=logaM logaNlogaMp=plogaM2对数中字母的取值范围。M0,N0,a0且a1强调:零和负数没有对数。3由对数定义及运算性质可直接得到下面性质:loga10,logaa1,logaamm,N(a0且a1)4两个特殊对数常用对数log10N记作lgN自然对数logeN记作lnN底数为e2.71828为无理数5性质强调:简易语言表述:“积的对数对数的和”“商的对数对数的差”“幂的对数幂指数乘以幂的底的对数”有时逆向用:如log105log102log10(52)lg101当心错误:loga(MN)logaMlogaNloga(MN)logaMlogaN三、典型例题三、典
3、型例题 例例1根据对数的定义,将对数式与指数式互化根据对数的定义,将对数式与指数式互化(1)(2)log16 解:(1)log5(2)点评由于指数式abN和对数式logaNb(a0,a1)可以相互转化。因此,本题容易由指数式改写成对数式,由对数式改写成指数式时,改写的指数式必须是恒等式时,原对数式才是正确的。要注意两种表示形式中a、b、N的相应位置。改写时首先弄清指数式(或对数式)中谁是b,谁是N,注意对数符号的写法。特别是底数和真数位置要书写规范。例例2已知已知loga2 m,loga3 n,求求a2m-3n的值。的值。解:loga2m与loga3n可化为am2与an3a2m-3n(am)(
4、an)223点评本题充分体现了指数式和对数式的相互转化功能。将对数式化为指数式后就把对数运算转化为指数运算,从而运用已学的指数运算性质求值。例例3求下列各式的值求下列各式的值(1)(2)注意:公式的逆用 点评用已知对数表示未知对数,就是把要表示的对数的真数分解成已知对数的真数的积、商、幂的形式,然后用对数的运算性质。注意运算性质只有在同底的情况下才能运算。第(2)题中未指明a、x、y、z的范围,这时我们就认为是使每个对数符号都有意义的a、x、y、z的最大范围,即a0,且a1,x0,y0,z0.2.8对数函数对数函数一、基础知识要求一、基础知识要求1掌握对数函数的概念,图象和性质,2会用对数函数
5、性质比较大小3重点在理解对数函数定义的基础上,掌握对数函数的图象和性质。4难点:(1)底数a对对数函数的影响(2)在解决有关对数函数问题时易忽略定义域对函数的影响。二、学法指导二、学法指导1定义:函数ylogax(a0且a1)叫做对数函数,x(0,),它是指数函数的反函数。2图像与性质(1)图像:a1(1,0)xyo0a1或0a1两种情况来讨论;换底公式logab;logab增减性由a1或0a1确定;ylogau(其中u是关于x的函数,u0)的增减性由a的取值和u的单调性确定。利用“闭区间上的单调函数在区间端点处取得最大或最小值”这一结论可以求logau(u是关于x的函数,且um,n)的最大或
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数对数函数 对数 函数 PPT 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内