《排列组合经典》PPT课件.ppt
《《排列组合经典》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《排列组合经典》PPT课件.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.2.组合的定义组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.3.排列数公式排列数公式:4.4.组合数公式组合数公式:1.1.排列的定义排列的定义:排列与组合的区别与联系排列与组合的区别与联系:与顺序有关的与顺序有关的为排列问题为排列问题,与顺序无关的为组合问题与顺序无关的为组合问题.一一.特殊元素和特殊位置优先策略特殊元素和特殊位置优先策略例例1.由由0,1,2,3,4,5可以组成多少个没有重复数字可以组成多少个没有重复数字 五位奇数五
2、位奇数.解解:由于末位和首位有特殊要求由于末位和首位有特殊要求,应该优先安应该优先安 排排,以免不合要求的元素占了这两个位置以免不合要求的元素占了这两个位置先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最后排其它位置共有最后排其它位置共有_由分步计数原理得由分步计数原理得=288位置分析法和元素分析法是解决排列组合问位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。题最常用也是最基本的方法。7 7种不同的花种在排成一列的花盆里种不同的花种在排成一列的花盆里,若两若两种葵花不种在中间,也不种在两端的花盆种葵花不种在中间,也不种在两端的花盆里里,问有多少不同的种法?问有多
3、少不同的种法?练习题练习题二.相邻元素捆绑策略例例2.72.7人站成一排人站成一排,其中甲乙相邻且丙丁相其中甲乙相邻且丙丁相 邻邻,共有多少种不同的排法共有多少种不同的排法.甲甲乙乙丙丙丁丁由分步计数原理可得共有由分步计数原理可得共有种不同的排法种不同的排法=480解:解:要求某几个元素必须排在一起的问题要求某几个元素必须排在一起的问题,可以用可以用捆绑法来解决问题捆绑法来解决问题.练习题练习题5个男生个男生3个女生排成一排个女生排成一排,3个女生个女生要排在一起要排在一起,有多少种不同的排法有多少种不同的排法?共有 =4320种不同的排法.三三.不相邻问题插空策略不相邻问题插空策略例例3 3
4、.一一个个晚晚会会的的节节目目有有4 4个个舞舞蹈蹈,2 2个个相相声声,3 3个个 独独唱唱,舞舞蹈蹈节节目目不不能能连连续续出出场场,则则节节目目的的出出 场场顺顺序序有有多多少少种种?解解:分两步进行第一步排分两步进行第一步排2 2个相声和个相声和3 3个独唱共个独唱共 有有 种,种,第二步将第二步将4 4舞蹈插入第一步排舞蹈插入第一步排好的好的6 6个元素中间包含首尾两个空位共有个元素中间包含首尾两个空位共有种种 不同的方法不同的方法 由分步计数原理,节目的不同顺序共有 种相相相相独独独独独独元素不相邻问题可先把没有位置要求的元素元素不相邻问题可先把没有位置要求的元素进行排队再把不相邻
5、元素插入中间和两端进行排队再把不相邻元素插入中间和两端某班新年联欢会原定的某班新年联欢会原定的5 5个节目已排成节目单,个节目已排成节目单,开演前又增加了两个新节目开演前又增加了两个新节目.如果将这两个新节如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为(不同插法的种数为()30练习题练习题四四.定序问题倍缩空位插入策略定序问题倍缩空位插入策略例例4.74.7人排队人排队,其中甲乙丙其中甲乙丙3 3人顺序一定共有多人顺序一定共有多 少种不同的排法少种不同的排法解:(空位法空位法)设想有)设想有7 7把椅子让除甲乙丙以外把椅子让
6、除甲乙丙以外的四人就坐共有的四人就坐共有 种方法,其余的三个种方法,其余的三个位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法方法 1思考思考:可以先让甲乙丙就坐吗可以先让甲乙丙就坐吗?(插入法插入法)先排甲乙丙三个人先排甲乙丙三个人,共有共有1 1种排法种排法,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4*5*6*74*5*6*7练习题期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?(倍缩法倍缩法)对于某几个元素顺序一定的排列对于某几个元素顺序一定的排列问题问题,可先把这几个元素与其他元素一起可先把这几个元素与其他元素一起进行排
7、列进行排列,然后用总排列数除以然后用总排列数除以这几个元这几个元素之间的全排列数素之间的全排列数,则共有不同排法种数则共有不同排法种数是:是:定序问题可以用倍缩法,还可转化为占位插定序问题可以用倍缩法,还可转化为占位插入模型处理入模型处理五五.重排问题求幂策略重排问题求幂策略例例5.5.把把6 6名实习生分配到名实习生分配到7 7个车间实习个车间实习,共有共有 多少种不同的分法多少种不同的分法解解:完成此事共分六步完成此事共分六步:把第一名实习生分配把第一名实习生分配 到车间有到车间有 种分法种分法.7 7把第二名实习生分配把第二名实习生分配 到车间也有到车间也有7 7种分法,种分法,依此类推
8、依此类推,由分步计由分步计数原理共有数原理共有 种不同的排法种不同的排法 一般地一般地n不同的元素没有限制地安排在不同的元素没有限制地安排在m个位置上的排列数为个位置上的排列数为 种种 n nm m 某某8 8层大楼一楼电梯上来层大楼一楼电梯上来8 8名乘客人名乘客人,他们他们 到各自的一层下电梯到各自的一层下电梯,下电梯的方法下电梯的方法()练习题练习题六六.排列组合混合问题先选后排策略排列组合混合问题先选后排策略例例6.6.有有5 5个不同的小球个不同的小球,装入装入4 4个不同的盒内个不同的盒内,每盒至少装一个球每盒至少装一个球,共有多少不同的装共有多少不同的装 法法.解解:第一步从第一
9、步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法.再把再把5 5个元素个元素(包含一个复合包含一个复合 元素元素)装入装入4 4个不同的盒内有个不同的盒内有_种方法种方法.根据分步计数原理装球的方法共有根据分步计数原理装球的方法共有_解决排列组合混合问题解决排列组合混合问题,先选后排是最基本先选后排是最基本的指导思想的指导思想.练习题练习题一个班有一个班有6 6名战士名战士,其中正副班长各其中正副班长各1 1人人现从中选现从中选4 4人完成四种不同的任务人完成四种不同的任务,每人每人完成一种任务完成一种任务,且正副班长有且只有且正副班长有且只有1 1人人参加
10、参加,则不同的选法有则不同的选法有_ _ 种种192192七.元素相同问题隔板策略例例7.有有1010个运动员名额,在分给个运动员名额,在分给7 7个班,每个班,每班至少一个班至少一个,有多少种分配方案?有多少种分配方案?解:因为解:因为10个名额没有差别,把它们排成个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法班级,每一种插板方法对应一种分法共有共有_种分法。种分法。一班二班三班四班五班六班七班将将n n个相同
11、的元素分成个相同的元素分成m m份(份(n n,m m为正整数)为正整数),每份至少一个元素每份至少一个元素,可以用可以用 块隔板,插入块隔板,插入n n个元素排成一排的个元素排成一排的 个空隙中,所有分法个空隙中,所有分法数为数为m-1n-1练习题练习题 10 10个相同的球装个相同的球装5 5个盒中个盒中,每盒至少一每盒至少一个,有多少装法?个,有多少装法?八八.平均分组问题除法策略平均分组问题除法策略例8.6本不同的书平均分成本不同的书平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解:分三步取书得分三步取书得 种方法种方法,但这里出现但这里出现 重复计数的现象重复计数的现
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合经典 排列组合 经典 PPT 课件
限制150内