2018年度六年级.数学上册各单元重点资料库归纳(原创.).doc
《2018年度六年级.数学上册各单元重点资料库归纳(原创.).doc》由会员分享,可在线阅读,更多相关《2018年度六年级.数学上册各单元重点资料库归纳(原创.).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版六年级数学上册各单元知识点归纳人教版六年级数学上册各单元知识点归纳 第一单元分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相 同。都是求几个相同加数的和的简 便运算。 例如:655 表示求 5 个 65 的和是多少? 5 表示求 5 个 的和是多少?1 31 3 2、一个数乘分数的意义是求一个数 的几分之几是多少。 例如: 表示求 的 是多少。1 34 71 34 74 表示求 4 的 是多少.3 83 8 (二)、分数乘法的计算法则: 1、分数与整数相乘:分子与整数相 乘的积做分子,分母不变。(整数和 分母约分) 2、分数与分数相乘:用分子相乘的 积做分
2、子,分母相乘的积做分母。 注意:当带分数进行乘法计算时, 要先把带分数化成假分数再进行计 算。 3、为了计算简便,能约分的要先约 分,再计算。(尽量约分,不会约 分的就不约,常考的质因数有 1111=121;1313=169;1717= 289;1919=361) 4、小数乘分数,可以先把小数化为 分数,也可以把分数化成小数再计 算(建议把小数化分数再计算)。 (三)、 乘法中比较大小的规律一个数(0 除外)乘大于 1 的数,积 大于这个数。一个数(0 除外)乘小于 1 的数(0 除外),积小于这个数。一个数(0 除外)乘 1,积等于这个 数。(四)、分数混合运算的运算顺 序和整数的运算顺序相
3、同。整数乘 法的交换律、结合律和分配律,对 于分数乘法也同样适用。 乘法交换律:a b = b a 乘法结合律: ( a b )c = a ( b c ) 乘法分配律: ( a + b )c = a c + b c二、分数乘法的解决问题(已知单 位“1”的量(用乘法),即求单位 “1”的几分之几是多少) 1、画线段图:(1)两个量的关系: 画两条线段图,先画单位一的量, 注意两条线段的左边要对齐。(2)部 分和整体的关系:画一条线段图。 2、找单位“1”: 单位“1” 在分 率句中分率的前面;或在“占”、“是”、“比”“相 当于”的后面。 3、写数量关系式的技巧: (1)“的” 相当于 “”
4、,“占” 、“相当于”“是”、“比”是 “ = ” (2)分率前是“的”字:用单位 “1”的量分率=具体量 例如:甲数是 20,甲数的 是多少?1 3列式是:201 3 4、看分率前有没有多或少的问题; 分率前是“多或少”的关系式: (比少):单位“1”的量(1-分 率)=具体量; 例如:甲数是 50,乙数比甲数少 1/2,乙数是多少?列式是:50(1- )1 2 (比多):单位“1”的量(1+分 率)=具体量 例如:小红有 30 元钱,小明比小红 多 3/5,小红有多少钱?列式是:50(1+ )3 5 3、求一个数的几倍是多少:用 一 个数几倍; 4、求一个数的几分之几是多少: 用一个数几分
5、之几。 5、求几个几分之几是多少:用几分 之几个数 6、求已知一个部分量是总量的几分之几,求另一个部分量的方法: (1)、单位“1”的量(1-分率)=另 一个部分量(建议用) (2)、单位“1”的量-已知占单位 “1”的几分之几的部分量=要求的 部分量 例如:教材 15 页做一做和 16 页练 习第七题(题目中有时候会有这种 题的关键字“其中”) 第二单元位置与方向(二) 一、确定物体位置的方法:1、先找 观测点;2、再定方向(看方向夹角 的度数);3、最后确定距离(看比 例尺) 二、描绘路线图的关键是选好观测 点,建立方向标,确定方向和路程。三、位置关系的相对性:1、两地的 位置具有相对性在
6、叙述两地的位置 关系时,观测点不同,叙述的方向 正好相反,而度数和距离正好相等。四、相对位置:东-西;南-北; 南偏东-北偏西。 第三单元分数除法三、倒数 1、倒数的意义: 乘积是 1 的两个 数互为倒数。 强调:互为倒数,即倒数是两个数 的关系,它们互相依存,倒数不能 单独存在。 (要说清谁是谁的倒数)。2、求倒数的方法: (1)、求分数的倒数:交换分子分母 的位置。 (2)、求整数的倒数:把整数看做分 母是 1 的分数,再交换分子分母的 位置。 (3)、求带分数的倒数:把带分数化 为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为 分数,再求倒数。3、 1 的倒数是 1; 因为 11
7、=1;0 没有倒数,因为 0 乘任何数都得 0,(分母不能为 0) 4、真分数的倒数大于 1;假分数的 倒数小于或等于 1;带分数的倒数小 于 1。 5、运用,a2/3=b1/4 求 a 和 b 是多少。把 a2/3=b1/4 看成等 于 1,也就是求 2/3 的倒数和求 1/4 的倒数。 1、分数除法的意义: 乘法:因数 因数 = 积 除法: 积 一个因数 = 另一个因数 分数除法与整数除法的意义相同, 表示已知两个因数的积和其中一个 因数,求另一个因数的运算。例如: 意义是:已知两个因数的1 23 5积是 与其中一个因数 ,求另一个因1 23 5 数的运算。 2、分数除法的计算法则: 除以
8、一个不为 0 的数,等于乘这个 数的倒数。 3、分数除法比较大小时的规律: (1)当除数大于 1,商小于被除数; (2)当除数小于 1(不等于 0),商大 于被除数; (3)当除数等于 1,商等于被除数。“ ”叫做中括号。一个算式里, 如果既有小括号,又有中括号,要 先算小括号里面的, 再算中括号里 面的。二、分数除法解决问题 1,解法:(1)方程: 根据数量关系 式设未知量为 X,用方程解答。 解:设未知量为 X (一定要解设), 再列方程 用 X分率=具体量 例如:公鸡有 20 只,是母鸡只数的 1/3,母鸡有多少只。(单位一是母 鸡只数,单位一未知.)解:设母鸡有 X 只。列方程为:X
9、=201 3 (2)算术(用除法):单位“1”的量 未知用除法: 即已知单位“1”的几分之几是多少, 求单位“1”的量。分率对应量对应分率 = 单位 “1”的量 例如:公鸡有 20 只,是母鸡只数的 1/3,母鸡有多少只。(单位一是母 鸡只数,单位一未知,)用除法,列式是:201 3 2、看分率前有没有比多或比少的问 题; 分率前是“多或少”的关系式: (比少):具体量 (1-分率)= 单 位“1”的量;例如:桃树有 50 棵,比苹果树少 ,1 6 苹果树有多少棵。列式是:50(1- )1 6 (比多):具体量 (1+分率)= 单位“1”的量 例如:一种商品现在是 80 元,比原 价增加了 1
10、/7,原价多少?列式是:80(1+ )1 73、求一个数是另一个数的几分之 几是多少: 用一个数除以另一个数, 结果写为分数形式。 例如:男生有 20 人,女生有 15 人, 女生人数占男生人数的几分之几。列式是:1520= = 15 203 4 4、求一个数比另一个数多几分之几 的方法: 用两个数的相差量单位“1”的量 =分数 即求一个数比另一个数多几分之 几:用(大数小数) 另一个数 (比那个数就除以那个数),结果 写为分数形式。 例如:5 比 3 多几分之几?(53)3=2 3 求一个数比另一个数少几分之几: 用(大数小数) 另一个数(比 那个数就除以那个数),结果写为 分数形式。 例如
11、:3 比 5 少几分之几?(53)5=2 5说明:多几分之几不等于少几分之 几,因为单位一不同。 5、工程问题:把工作总量看作单位 “1”,合做多长时间完成一项工程用 1效率和,即 1(+),1 时间1 时间(工作效率=)1 时间 例如:一项工程甲单独做要 5 天完 成,乙单独做要 10 天完成,甲单独 做要 3 天完成,三人合做几天可以完成?列式:1( + + )1 51 101 3 第四单元比 (一)、比的意义 1、比的意义:两个数相除又叫做两 个数的比。 2、在两个数的比中,比号前面的数 叫做比的前项,比号后面的数叫做 比的后项。比的前项除以后项所得 的商,叫做比值。例如 15 :10
12、= 1510=3/2 (比3 2 值通常用分数表示,也可以用小数 或整数表示)15 10 32 前项 比号 后项 比值 3、比可以表示两个相同量的关系, 即倍数关系。例:长是宽的几倍。 也可以表示两个不同量的比,得到 一个新量。例: 路程速度=时间。4、区分比和比值 比:表示两个数的关系,可以写成 比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以 是整数,分数,也可以是小数。 5、根据分数与除法的关系,两个数 的比也可以写成分数形式。 6、 比和除法、分数的联系:比前项比号 “:”后项比值除 法被除 数除号 “”除 数商分 数分子分数线 “”分 母分数 值7、比和除法、分数的区别:
13、除法是 一种运算,分数是一个数,比表示 两个数的关系。 8、根据比与除法、分数的关系,可 以理解比的后项不能为 0。 9、体育比赛中出现两队的分是 2:0 等,这只是一种记分的形式, 不表示两个数相除的关系。 10、求比值:用前项除以后项,结 果最好是写为分数(不会约分的就 不约分) 例如:15 10 151015103/2(二)、比的基本性质 1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时 乘或除以相同的数(0 除外),商不变。分数的基本性质:分数的分子和分 母同时乘或除以相同的数时(0 除外), 分数值不变。 比的基本性质:比的前项和后项同 时乘或除以相同的数(0 除外),
14、比值 不变。 2、最简整数比:比的前项和后项都 是整数,并且是互质数,这样的比 就是最简整数比。 3、根据比的基本性质,可以把比化 成最简单的整数比。 4.化简比:(2)用求比值的方法。注意: 最 后结果要写成比的形式。 例如: 1510 = 1510 =1510 3/2 = 32 还可以 1510 = 1510 = 3/2 最简整数比是 32 5、比中有单位的,化简和求比值时 要把单位化相同再化简和求比值, 结果没有单位。 6.按比例分配:把一个数量按照一 定的比来进行分配。这种方法通常 叫做按比例分配。一般有两种解题 法 ,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要 先求出
15、总份数,再求出几份占总份 数的几分之几,最后再用总量分别 乘几分之几。 例如:有糖水 25 克,糖和水的比为 1:4,糖和水分别有几克? 1+4=5 糖占 1/5 用 251/5 得到 糖的数量,水占 4/5 用 254/5 得 到水的数量。 2,用份数解:要先求出总份数,再 求出每一份是多少,最后分别求出 几份是多少。 例如:有糖水 25 克,糖和水的比为 1:4,糖和水分别有几克? 糖和水的份数一共有 1+4=5 一份就 是 255=5 糖有 1 份就是 51 水有 4 分就是 54 第五单元圆的认识 一、认识圆形 1、圆的定义:圆是由曲线围成的一 种平面图形。 2、圆心:将一张圆形纸片对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年度 六年级 数学 上册 单元 重点 资料库 归纳 原创
限制150内