函数单调性的判定法.ppt
《函数单调性的判定法.ppt》由会员分享,可在线阅读,更多相关《函数单调性的判定法.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、单调性的判别法一、单调性的判别法定理定理例例1 1解解注意注意:函数的单调性是一个区间上的性质,要用函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性点处的导数符号来判别一个区间上的单调性二、单调区间求法二、单调区间求法问题问题:如上例,函数在定义区间上不是单调的,如上例,函数在定义区间上不是单调的,但在各个部分区间上单调但在各个部分区间上单调定义定义:若函数在其定义域的某个区间内是单调若函数在其定义域的某个区间内是单调的,则该区间称为函数的的,则该区间称为函数的单调区间单调区间.导数等
2、于零的点和不可导点,可能是单调区间导数等于零的点和不可导点,可能是单调区间的分界点的分界点方法方法:例例2 2解解单调区间为单调区间为例例3 3解解单调区间为单调区间为练习练习求函数求函数的单调区的单调区解解令令解得解得在在处处不存在不存在.在在内,内,函数单调增加函数单调增加.在在内,内,间间.在在内,内,函数单调增加函数单调增加.函数单调减少函数单调减少.在在内,内,函数单调增加函数单调增加.例例4 4证证注意注意:区间内个别点导数为零区间内个别点导数为零,不影响区间的单调性不影响区间的单调性.例如例如,练习练习 试证明:试证明:当当时,时,证证作辅助函数作辅助函数因为因为在在上连续,上连
3、续,在在内可导,内可导,当当时,时,又又故当故当时,时,所以所以且且三、小结三、小结单调性的判别是拉格朗日中值定理定理的单调性的判别是拉格朗日中值定理定理的重要应用重要应用.定理中的区间换成其它有限或无限区间,定理中的区间换成其它有限或无限区间,结论仍然成立结论仍然成立.应用:利用函数的单调性可以确定某些方应用:利用函数的单调性可以确定某些方程实根的个数和证明不等式程实根的个数和证明不等式.思考题思考题思考题解答思考题解答不能断定不能断定.例例但但当当 时,时,当当 时,时,注意注意 可以任意大,故在可以任意大,故在 点的任何邻点的任何邻域内,域内,都不单调递增都不单调递增练练 习习 题题练习题答案练习题答案
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 调性 判定
限制150内