聚合物基复合材料介电性能研究综诉.pdf
《聚合物基复合材料介电性能研究综诉.pdf》由会员分享,可在线阅读,更多相关《聚合物基复合材料介电性能研究综诉.pdf(64页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Fundamentals,processes and applicationsof high-permittivity polymermatrix compositesZhi-Min Danga,b,c,Jin-Kai Yuanb,Jun-Wei Zhaa,Tao Zhoub,Sheng-Tao Lic,Guo-Hua Hud,e,aDepartment of Polymer Science and Engineering,School of Chemical and Biological Engineering,University of Science&Technology Beijing
2、,Beijing 100083,ChinabState Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,ChinacState Key Laboratory of Electrical Insulation and Power Equipment,Xian Jiaotong University,Xian 710049,ChinadLaboratory of Reactions and Process Engineering,Nanc
3、y University,CNRS-ENSIC-INPL,1 rue Grandville,B.P.451,54001 Nancy Cedex,FranceeInstitut Universitaire de France,Maison des Universits,103 Boulevard Saint-Michel,75005 Paris,Francea r t i c l ei n f oArticle history:Received 21 April 2011Received in revised form 27 May 2011Accepted 14 August 2011Avai
4、lable online 25 August 2011a b s t r a c tThere is an increasing need for high-permittivity(high-k)materialsdue to rapid development of electrical/electronic industry.It iswell-known that single composition materials cannot meet thehigh-k need.The combination of dissimilar materials is expectedto be
5、 an effective way to fabricate composites with high-k,especial0079-6425/$-see front matter?2011 Elsevier Ltd.All rights reserved.doi:10.1016/j.pmatsci.2011.08.001Abbreviations:Al2O3,alumina;BaTiO3,barium titanate;CB,carbon black;CCTO,calcium copper titanate;CF,carbon fiber;CH2Cl2,dichlodo methylene
6、chloride;CNF,carbon nanofiber;CNT,carbon nanotubes;CuPc,copper-phthalocyanine;DBSA,dodecylbenzene sulfonic acid;DMF,dimethyl formamide;HA,hydroxyapatite;HDPE,high-density polyethylene;LDPE,low-density polyethylene;LTNO,Li and Ti codoped NiO;MNCB,modified nanoscale carbon black;MWNT,multi-wall carbon
7、nanotubes;NMP,N-methyl-pyrrolidone;ODA,4,40-oxydianiline;PA,polyamide;PAA,poly(amic acid);PANI,polyaniline;PbTiO3,lead titanate;PC,polycarbonate;PCMS,poly(p-chloromethyl styrene);PE,polyethylene;PEEK,polyetheretherketone;PFSA,perfluorosulfonic acid;PHAE,polyhydroxyaminoether;PI,polyimide;PLZT,lead l
8、anthanum zirconium titanate;PMDA,pyromellitic dianhydride;PMeT,poly(3-methylthiophene);PMMA,polymethylmethacrylate;PMNPT,lead magnesiumniobatelead titanate;POM,polyoxymethylene or polyformaldehyde;PP,polypropylene;PPY,polypyrrole;PS,polystyrene;PU,polyurethane;PVA,polyvinyl alcohol;PVDF,polyvinylide
9、ne fluoride;P(VDFTrFE),poly(vinylidene fluoridetrifluoroeth-ylene);P(VDFTrFECFE),poly(vinylidene fluoridetrifluoroethylenechlorofluoroethylene);P(VDFTrFECTFE),poly(vinyli-dene fluoridetrifluoroethylenechlorotrifluoroethylene);PVP,polyvinyl pyrrolidone;PZT,lead zirconium titanate;SiO2,silicon dioxide
10、;SPAI,siloxanemodified polyamideimide;SrTiO3,zirconium titanate;SWNT,single-wall carbon nanotubes;TFBB,3,4,5-trifluorobromobenzene;TFP-MWNT,trifluorophenyl(TFP)-functionalized MWNTs;THF,tetrahydrofurane;TiO2,titaniumdioxide;TMPTA,trimethylolpropane triacrylate;UHMWPE,ultrahigh molecular weight polye
11、thylene;xGnP,exfoliated graphitenanoplates.Corresponding authors.Addresses:Department of Polymer Science and Engineering,School of Chemical and BiologicalEngineering,University of Science&Technology Beijing,Beijing 100083,China.Tel./Fax:+86 10 6233 2599(Z.-M.Dang),Laboratory of Reactions and Process
12、 Engineering,Nancy University,CNRS-ENSIC-INPL,1 rue Grandville,B.P.451,54001 NancyCedex,France.Tel.:+33 383 17 53 39;fax:+33 383 32 29 75(G.-H.Hu).E-mail addresses:(Z.-M.Dang),guo-hua.huensic.inpl-nancy.fr(G.-H.Hu).Progress in Materials Science 57(2012)660723Contents lists available at SciVerse Scie
13、nceDirectProgress in Materials Sciencejournal homepage: high-k polymermatrix composites(PMC).This review paperfocuses on the important role and challenges of high-k PMC innew technologies.The use of different materials in the PMC createsinterfaces which have a crucial effect on final dielectric prop
14、erties.Therefore it is necessary to understand dielectric properties andprocessing need before the high-k PMC can be made and appliedcommercially.Theoretical models for increasing dielectric permit-tivity are summarized and are used to explain the behavior ofdielectric properties.The effects of fill
15、ers,fabrication processesand the nature of the interfaces between fillers and polymers arediscussed.Potential applications of high-k PMC are also discussed.?2011 Elsevier Ltd.All rights reserved.Contents1.Introduction.6622.Fundamental aspects of high-k composites.6652.1.Definition of high permittivi
16、ty(high-k).6652.2.Capacitance and electric energy storage of materials.6662.3.Polarization and relaxation of dielectric materials.6662.4.Dielectric strength of random polymermatrix composites.6682.5.Theoretical models for dielectric properties of polymermatrix composites.6692.5.1.MaxwellGarnett equa
17、tion.6692.5.2.Bruggeman self-consistent effective medium approximation.6702.5.3.JaysundereSmith equation.6702.5.4.Lichtenker rule.6712.5.5.Percolation model.6712.6.Connection type of PMC.6743.Processes for the fabrication of high-k PMC.6743.1.Solid phase processes.6743.1.1.Direct compounding.6743.1.
18、2.Melt compounding.6753.2.Liquid phase processes.6753.2.1.Liquid-phase assisted dispersion.6753.2.2.Solution route.6763.3.In situ polymerization processes.6764.Microstructure and interfaces of high-k PMC.6774.1.Two-phase high-k PMC.6774.2.Three-phase high-k PMC.6815.Effect of fillers on dielectric p
19、roperties of high-k PMC.6835.1.Concentration effect of fillers on dielectric properties.6845.1.1.Effect of ceramic fillers.6845.1.2.Effect of electrical conducting fillers.6875.2.Size effect of fillers on dielectric properties of PMC.6895.2.1.Change in physical properties of fillers with size reduct
20、ion.6895.2.2.Dependence of dielectric properties of PMC on size of fillers.6905.2.3.Effect of micronanosize cofillers on dielectric properties of PMC.6925.3.Shape effect of fillers on dielectric properties.6945.3.1.Shape of fillers and fillerpolymer connectivity.6945.3.2.Effect of 1-dimensional fibe
21、r-shape fillers on dielectric properties.6955.3.3.Effect of 2-demension plate-shape fillers on dielectric properties.6985.3.4.Effect of coreshell fillers on dielectric properties.6986.Effects of measurement conditions on dielectric properties.7006.1.Temperature dependence of dielectric properties.70
22、06.1.1.Organic fillers/polymer composites.7006.1.2.Insulating ceramic fillers/polymer composites.701Z.-M.Dang et al./Progress in Materials Science 57(2012)6607236616.1.3.Semiconducting ceramic fillers/polymer composites.7026.1.4.Conducting fillers/polymer composites.7036.2.Frequency dependence of di
23、electric properties.7036.2.1.Organic fillers/polymer composites.7036.2.2.Ceramic fillers/polymer composites.7056.2.3.Conducting fillers/polymer composites.7076.3.Electrical field dependence of dielectric properties.7077.Applications for high-k PMCs.7097.1.Applications in microelectronic field.7097.2
24、.Applications in electrical engineering field.7127.3.Applications in biomedical fields.7138.Concluding remarks and future perspective.714Acknowledgements.715References.7151.IntroductionAs predicted by Moores law,the efficiency of electronic products is improving in an exponentialmanner 1,2.This rapi
25、d improvement in efficiency is concomitant with the creation of new materialswith high permittivity(called high-k dielectric materials).A higher-k dielectric material can storemore electric energy than a lower one.As a result,its use in electronic devices allows improving theirefficiency.Electronic
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 聚合物 复合材料 性能 研究
限制150内