《(课件1)13算法案例.ppt》由会员分享,可在线阅读,更多相关《(课件1)13算法案例.ppt(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、算 法 案 例(第一课时)1、求两个正整数的最大公约数、求两个正整数的最大公约数(1)求)求25和和35的最大公约数的最大公约数(2)求)求49和和63的最大公约数的最大公约数2、求、求8251和和6105的最大公约数的最大公约数 25(1)5535749(2)77639所以,所以,25和和35的最大公约数为的最大公约数为5所以,所以,49和和63的最大公约数为的最大公约数为7辗转相除法(欧几里得算法)辗转相除法(欧几里得算法)观察用辗转相除法求观察用辗转相除法求8251和和6105的最大公约数的过程的最大公约数的过程 第一步第一步 用两数中较大的数除以较小的数,求得商和余数用两数中较大的数除
2、以较小的数,求得商和余数8251=61051+2146结论:结论:8251和和6105的公约数就是的公约数就是6105和和2146的公约数,求的公约数,求8251和和6105的最大公约数,只要求出的最大公约数,只要求出6105和和2146的公约数就可以了。的公约数就可以了。第二步第二步 对对6105和和2146重复第一步的做法重复第一步的做法6105=21462+1813同理同理6105和和2146的最大公约数也是的最大公约数也是2146和和1813的最大公约数。的最大公约数。完整的过程完整的过程8251=61051+2146 6105=21462+1813 2146=18131+333181
3、3=3335+148333=1482+37148=374+0例例2 用辗转相除法求用辗转相除法求225和和135的最大公约数的最大公约数225=1351+90135=901+4590=452显然显然37是是148和和37的最大公约的最大公约数,也就是数,也就是8251和和6105的最的最大公约数大公约数 显然显然45是是90和和45的最大公约数,也就是的最大公约数,也就是225和和135的最大公约数的最大公约数 思考思考1:从上面的两个例子可以看出计:从上面的两个例子可以看出计算的规律是什么?算的规律是什么?S1:用大数除以小数:用大数除以小数S2:除数变成被除数,余数变成除数:除数变成被除数
4、,余数变成除数S3:重复:重复S1,直到余数为,直到余数为0 辗转相除法是一个反复执行直到余数等于辗转相除法是一个反复执行直到余数等于0停止的步骤,这实际上是停止的步骤,这实际上是一个循环结构。一个循环结构。8251=61051+2146 6105=21462+1813 2146=18131+3331813=3335+148333=1482+37148=374+0m=n q r用程序框图表示出右边的过程用程序框图表示出右边的过程r=m MOD nm=nn=rr=0?是否九章算术九章算术更相减损术更相减损术 算理:算理:可半者半之,不可半者,副置分母、子之数,以少减多,更相减可半者半之,不可半者
5、,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之。损,求其等也,以等数约之。第一步:第一步:任意给顶两个正整数;判断他们是否都是偶数。若是,则用任意给顶两个正整数;判断他们是否都是偶数。若是,则用2约简;若不是则执行第二步。约简;若不是则执行第二步。第二步:第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止,则这个以大数减小数。继续这个操作,直到所得的减数和差相等为止,则这个等数就是所求的最大公约数。等数就是所求的最大公约数。例例3 用更相减损术求用更相减损术求98与与63的最大公约数的最大公约数解:由于解:由于63不是偶数,把不是偶数,把98和和63以大数减小数,并辗转相减以大数减小数,并辗转相减 9863356335283528728721217141477所以,所以,98和和63的最大公约数等于的最大公约数等于7 练习:
限制150内