《高考试卷》2023年普通高等学校招生全国统一考试(湖南卷)数学理科答案与解析(参考版).doc
《《高考试卷》2023年普通高等学校招生全国统一考试(湖南卷)数学理科答案与解析(参考版).doc》由会员分享,可在线阅读,更多相关《《高考试卷》2023年普通高等学校招生全国统一考试(湖南卷)数学理科答案与解析(参考版).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2014年普通高等学校招生全国统一考试(湖南卷)数学理科一.选择题.1.【答案】B【解析】由题可得,故选B.【考点定位】复数2.【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即,故选D.【考点定位】抽样调查 3.【答案】C【解析】分别令和可得且,则,故选C.【考点定位】奇偶性4.【答案】A【解析】第项展开式为,则时, ,故选A.【考点定位】二项式定理5.【答案】C【解析】当时,两边乘以可得,所以命题为真命题,当时,因为,所以命题为假命题,所以为真命题,故选C.【考点定位】命题真假 逻辑连接词6.【答案】D【解析】当时,运行程序如下,
2、当时,则,故选D.【考点定位】程序框图 二次函数7.【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点定位】三视图 内切圆 球8.【答案】D【解析】设两年的平均增长率为,则有,故选D.【考点定位】实际应用题9.【答案】A【解析】函数的对称轴为,因为,所以或,则是其中一条对称轴,故选A.【考点定位】三角函数图像 辅助角公式10.【答案】B【解析】由题可得存在满足,当取决于负无穷小时,趋近于,因为函数在定义域内是单调递增的,所以,故选B.【考点定位】指对数函数 方程二.填空题.11.【答案】【解析】曲线的普通方程为,设直线的方程为,因为弦
3、长,所以圆心到直线的距离,所以圆心在直线上,故,故填.【考点定位】极坐标 参数方程12.【答案】 【解析】设线段交于点D延长交圆与另外一点,则,由三角形ABD的勾股定理可得,由双割线定理可得,则直径,故填.【考点定位】勾股定理 双割线定理13.【答案】【解析】由题可得,故填.【考点定位】绝对值不等式14.【答案】【解析】求出约束条件中三条直线的交点为,且的可行域如图,所以,则当为最优解时,当为最优解时, 因为,所以,故填.【考点定位】线性规划15.【答案】【解析】由题可得,则,故填.【考点定位】抛物线16.【答案】【解析】动点的轨迹为以为圆心的单位圆,则设为,则,因为的最大值为,所以的最大值为
4、,故填.【考点定位】参数方程 圆 三角函数17.某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为和,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.(1)求至少有一种新产品研发成功的概率;(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.17.【答案】(1) (2)详见解析 【解析】(1)解:设至少有一组研发成功的事件为事件且事件为事件的对立事件,则事件为一种新产品都没有成功,因为甲,乙成功的概率分别为,则,再根据对立事件概率之间的公式可得,所以至少一种产品研发成功的概率为.(2)由题可得设
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考试卷 高考 试卷 2023 普通高等学校 招生 全国 统一 考试 湖南 数学 理科 答案 解析 参考
限制150内