《高考试卷》2023年新课标Ⅰ理数高考试题答案.doc
《《高考试卷》2023年新课标Ⅰ理数高考试题答案.doc》由会员分享,可在线阅读,更多相关《《高考试卷》2023年新课标Ⅰ理数高考试题答案.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017年新课标1理数答案1.A2.B3.B4.C5.D6.C7.B8.D9.D10.A11.D12.A13. 14. 15. 16. 17.解:(1)由题设得,即.由正弦定理得.故.(2)由题设及(1)得,即.所以,故.由题设得,即.由余弦定理得,即,得.故的周长为.18.解:(1)由已知,得ABAP,CDPD.由于ABCD,故ABPD,从而AB平面PAD.又AB 平面PAB,所以平面PAB平面PAD.(2)在平面内做,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,.所以,.设是平面的法向量,则,即,可取
2、.设是平面的法向量,则,即,可取.则,所以二面角的余弦值为.19.【解】(1)抽取的一个零件的尺寸在之内的概率为0.9974,从而零件的尺寸在之外的概率为0.0026,故.因此.的数学期望为.(2)(i)如果生产状态正常,一个零件尺寸在之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程学科&网可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由,得的估计值为,的估计值为,由样本数据可以看出有一个零件的尺寸在之外,因此需对当天的生
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考试卷 高考 试卷 2023 新课 试题答案
限制150内