《高考试卷》2023年新jiang数学(文科)高考试题(word版).doc
《《高考试卷》2023年新jiang数学(文科)高考试题(word版).doc》由会员分享,可在线阅读,更多相关《《高考试卷》2023年新jiang数学(文科)高考试题(word版).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、绝密启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。学科网1ABCD2已知集合,则ABCD3函数的图像大致为4已知向量,满足,则A4B3C2D05从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为ABCD6双曲线的离心率为,则其渐近线方程为ABCD7在中,则ABCD8为计算,设计了如图的程序框图,则在空
2、白框中应填入 A B C D9在正方体中,为棱的中点,则异面直线与所成角的正切值为ABC D10若在是减函数,则的最大值是ABC D11已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为ABC D12已知是定义域为的奇函数,满足若,则AB0C2D50二、填空题:本题共4小题,每小题5分,共20分。13曲线在点处的切线方程为_14若满足约束条件 则的最大值为_15已知,则_16已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23为选考题。考
3、生根据要求作答。(一)必考题:共60分。17(12分)记为等差数列的前项和,已知,(1)求的通项公式;(2)求,并求的最小值18(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型根据2000年至2016年的数据(时间变量的值依次为)建立模型:;根据2010年至2016年的数据(时间变量的值依次为)建立模型:(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由19(12分)如图,在三棱锥中,为的中点(1)证明:平面;(2)若点在棱上,且,求点到平面的距离20(12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,(1)求的方程;(2)求过点,且与的准线相切的圆的方程21(12分)已知函数(1)若,求的单调区间;(2)证明:只有一个零点(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数)(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率23选修45:不等式选讲(10分)设函数(1)当时,求不等式的解集;(2)若,求的取值范围
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考试卷 高考 试卷 2023 jiang 数学 文科 试题 word
限制150内