[高一数学]人教版中职数学教材-基础模块上册全册教案[1-5章共41份教案][精品全套].pdf
《[高一数学]人教版中职数学教材-基础模块上册全册教案[1-5章共41份教案][精品全套].pdf》由会员分享,可在线阅读,更多相关《[高一数学]人教版中职数学教材-基础模块上册全册教案[1-5章共41份教案][精品全套].pdf(91页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版中职数学教材 根底模块上册全册教案 目 录 第三章 函数.1 3.1.1 函数的概念.1 3.1.2 函数的表示方法.5 3.1.3 函数的单调性.8 3.1.4 函数的奇偶性.13 3.2.1 一次、二次问题.17 3.2.2 一次函数模型.20 3.2.3 二次函数模型.24 3.3 函数的应用.28 第四章 指数函数与对数函数.30 4.1.1 有理指数(一).30 4.1.1 有理指数(二).34 4.1.2 幂函数举例.38 4.1.3 指数函数.41 4.2.1 对数.45 4.2.2 积、商、幂的对数.48 4.2.3 换底公式与自然对数.52 4.2.4 对数函数.54
2、4.3 指数、对数函数的应用.57 第五章 三角函数.60 5.1.1 角的概念的推广.60 5.1.2 弧度制.64 5.2.1 任意角三角函数的定义.67 5.2.2 同角三角函数的根本关系式.71 5.2.3 诱导公式.75 5.3.1 正弦函数的图象和性质.80 5.3.2 余弦函数的图象和性质.84 5.3.3 三角函数值求角.87 第三章 函数 函 数 的 概 念 【教学目标】1.理解函数的概念,会求简单函数的定义域 2.理解函数符号 yf(x)的意义,会求函数在 xa 处的函数值 3.通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点【教学重点】函数的概念及两要素,会求函
3、数在 xa 处的函数值,求简单函数的定义域【教学难点】用集合的观点理解函数的概念【教学方法】这节课主要采用问题解决法和分组教学法运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素然后通过求函数值与定义域的两类题目,深化对函数概念的理解【教学过程】环节 教学内容 师生互动 设计意图 导 入 1试举出各类学过的一些函数例子 2初中函数定义 在一个变化过程中,有两个变量 x 和 y,如果给定一个 x 值,就相应地确定了唯一的 y 值,那么我们就称 y 是 x 的函数,其中 x 是自变量,y 是因变量 师:事物都是运动变化的,如:气温随时间在悄悄变化;我
4、国的国内生产总值在逐年增长等在这些变化中,都存在着两个变量,当一个变量变化时,另一个变量随之发生变化在数学中,我们用函数来描述两个变量之间的关系 师:提出问题 生:回忆解答 师生共同回忆初中函数定义 为知识迁移做准备在阅读适量的例子后再回忆引出初中定义,由具体到抽象,符合职校学生的认知能力 新 课 一、函数概念 1.问题 1 一辆汽车在一段平坦的道路上以 100 km/h 的速度匀速行驶 2 小时 1在这个问题中,路程、时间、速度这三个量,哪些是常量?哪些是变量?2如何用数学符号表示行驶的路程 s学生阅读课本,讨论并答复教师提出的问题 问题一、二是为突出本课重难点而设计 深度挖掘教材提出的两个
5、问题,在回忆了初中的函数知识 新 课 km与行驶时间 th的关系?3 行驶时间 t h 的取值范围是什么?4对于行驶时间中的每一个确定的 t值,你能求出汽车行驶的路程吗?5根据初中知识,关系式 s100 t 0t2表示的是函数关系吗?2问题 2 如果一个圆的半径用 r 表示,它的面积用 A 表示 1你能用数学符号表示圆的面积 A 与它的半径 r 之间的关系吗?2在 A 与 r 的关系式中,r 的取值范围是什么?3关系式 A r2r0表达的是一种函数关系吗?因变量是哪个量?自变量是哪个量?3两个事实 4函数概念 设集合 A 是一个非空的数集,对 A 内任意实数 x,按照某个确定的法那么 f,有唯
6、一确定的实数值 y 与它对应,那么称这种对应关系为集合 A 上的一个函数 记作:yf(x)其中 x 为自变量,y 为因变量自变量 x 的取值集合 A 叫做函数的定义域对应的因变量 y 的取值集合叫做函数的值域 5 6函数两要素:定义域和对应法那么 教师针对学生的答复进行点评 师:从问题 1 和问题 2 中,可以看到两个重要的事实:1在每个例子中都指出了自变量的取值集合;2都给出了对应法那么对自变量的一个值,都有唯一的一个因变量值与之对应 教师引导学生学习函数的概念 学生阅读课本函数概念,在理解的根底上记忆函数概念 师:函数关系实质是非空数集到非空数集的对应关系 师:函数的值域被函数的定义域和对
7、应法那么完全确定 的根底上,进一步讨论自变量的取值范围,以及自变量与因变量的对应关系,为顺利引出函数定义做准备 通过阅读讨论分析,利用学生原有知识结构 结合问题 1、2 的实例,降低对函数概念的理解难度 分析两个实例,归纳得出两个事实,为引出函数的概念做最后的准备 用图形能更直观地表示两个重要事实 借助问题 1、问题 2加深对函数概念的理解 强调“集合 A 是一个非空的数集、“法那么、“唯一等关键词语 使学生理解函数关系实质是非空数集到非空数集的对应关系 使学生明确 A x A x f:对应法那么 y.f:对应法那么.y.新 课 要检验给定两个变量之间的关系是不是函数,只要检验:1定义域是否给
8、出;2对应法那么是否给出,并且根据这个对应法那么,能否由自变量 x 的每一个值,确定唯一的 y 值 例 1 判断以下图中对应关系是否是函数:7有关符号:(1)函数 yf(x)也经常写作函数 f(x)或函数 f(2)也可以将 y 是 x 的函数记为 yg(x),或者 yh(x),等 二、求函数值 函数 yf(x)在 xa 处对应的函数值 y,记作 yf(a)例 2 函数 f(x)12 x1 求:f(0),f(1),f(2),f(a)解 f(0)1011,f(1)12113,f(2)14113 f(a)12 a1 学生讨论例题中的对应关系是否满足函数的定义,并解答之 教师总结,一个自变量 x只能有
9、唯一的 y 与之对应 教师讲解函数符号的含义 学生分组讨论求解的方法;小组讨论后教师引导完成 1 函数值域不是函数的要素的原因;2 函数两要素的作用 利用函数的两要素来判断两变量的关系是否是函数关系还需要在以后的学习中加以稳固 通过本例,使学生进一步理解函数关系的实质 在本节中首次引入了抽象的函数符号 f(x),学生往往只接受具体的函数解析式,而不能接受 f(x),所以应让学生从符号的含义开始认识,这局部教师必须讲解清楚 进一步加强学生对 fa的理解 A B 1 4 9 开平方 1 1 2 2 3 3 A B 4 5 6 2 倍 8 10 12 A 1 1 2 2 1 4 5 6 B 平方 练
10、习 1 教材 P61,练习 A 组第 2 题 三、函数的定义域 函数关系式中,函数的定义域有时可以省略,如果不特别指明一个函数的定义域,那么这个函数的定义域就是使函数有意义的全体实数构成的集合 例 3 求函数 yx+3x 的定义域 解 要使函数有意义,当且仅当 x30 x0 所以函数的定义域为 x|x3,x0 练习 2 教材 P61,练习 B 组第 2 题 教师引导学生求函数值 教师强调函数的定义域是一个集合 总结求分式函数,偶次根式函数的定义域的方法 教师强调定义域的表示形式 学生讨论求解 求定义域题目不必过难,重点在理解定义域的概念 小 结 1.函数概念 2.两要素 3.函数符号 4.定义
11、域 师生合作 梳理总结也可针对学生薄弱或易错处进行强调和总结 作 业 教材 P61,练习 A 组第 2(3)题;练习 B 组第 2(3)题 稳固拓展 函 数 的 表 示 方 法 【教学目标】1.了解函数的解析法、列表法、图象法三种主要表示方法 2.函数解析式会用描点法作简单函数的图象 3.培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力【教学重点】函数的三种表示方法;作函数图象【教学难点】作函数图象【教学方法】这节课主要采用问题解决法和分组讨论教学法本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数
12、性质以指导画图,防止画图的盲目性通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫【教学过程】环节 教学内容 师生互动 设计意图 导 入 1函数的定义是什么?2你知道的函数表示方法有哪些呢?师:提出问题 生:回忆思考答复 为 知 识迁移做准备 新 课 1函数的三种表示方法:(1)解析法 (2)列表法 (3)图象法 2问题.由节的问题中所给的函数解析式 s100 t(0t2)作函数图象 解:列表(略);画图 学生阅读教材 P62,了解函数的三种表示方法 师:函数的三种根本表示方法,各有各的优点和缺点,有时把这三种方法结合起来使用,即由的函数解析式,列出自变量
13、与对应的函数值的表格,再画出它的图象 师:你知道画函数图象的步骤是什么吗?生:第一步:列表;第二步:描点;第三步:连线 师:在问题及解答过程中,我们分别用到了哪些函数的表示方法?生:解析法、列表法、图象法 这一局部内容简单,可采用阅读思考等方式进行教学,充分利用教材资源发挥学生的主动性 培养学生勤于思考善于分析的意识和能力 此题的 新 课 3针对上面的例子,思考并答复以下问题:(1)在上例描点时,是怎样确定一个点的位置的?哪个变量作为点的横坐标?哪个变量作为点的纵坐标?(2)函数的定义域是什么?(3)s 的值能大于 200 吗?能是负值吗?为什么?函数的值域是什么?(4)距离 s 随行驶时间
14、t 的增大有怎样的变化?4例 1 作函数 yx3 的图象 解 列表 画图 5结合例 1 完成以下问题:(1)函数 yx3 的定义域、值域是什么?(2)函数值 y 随 x 的增大有怎样的变化?(3)f(a)与 f(a)相等吗?有怎样的关系?(4)函数图象是轴对称图形还是中心对称图形?教师引导学生利用函数图象分析答复函数的性质 师:由上例可以看出,我们在列表、作图时,要认真分析函数,防止盲目列表计算 函数的图象有利于我们研究函数的性质,如本例中函数的定义域、值域以及 y 随 x增大而增大等性质 教师引导学生分析:函数 yx3 的定义域是 R,当 x0 时,y0,这时函数的图象在第一象限,y 的值随
15、着 x 的值增大而增大;当 x0 时,y0,这时函数的图象在第三象限,y 的值随着 x 的值减小而减小 教师引导学生完成列表、描点及连线,完成函数图象 师生合作完成例 1,让学生体会取值前如何分析研究函数式的特点 学生分组讨论完成,从讨论中掌握分析函数性质的方法 学生小组合作分析课本例 2设置起到了承上启下的作用 为突破本节课难点而设计问题(4)为下节引入函数的单调性做准备 让学生在作图过程中体会函数的性质,从做中学 尽可能把主动权交给学生,使学生在自主探索中发现问题解决问题 问题(3)(4)的设置是为引入函数的奇偶性作准备 防止为作图象而作 新 课 6例 2 作函数 y1x2 的图象 解 列
16、表 画图 7结合例 2 解答以下问题:(1)函数 y1x2 的定义域、值域是什么?(2)在第一象限中,函数值 y 随 x 的增大有怎样的变化?在第二象限中呢?(3)f(a)与 f(a)相等吗?有怎样的关系?(4)函数图象是轴对称图形还是中心对称图形?如何取值 学生作出例 2 图象,教师针对出现的情况进行点评或让学生互评 教师强调自变量的取值,即 x|x0 学生分组讨论完成,从讨论中掌握分析函数性质的方法 图象,让学生在画图的过程中学习 让学生进一步掌握分析函数性质的方法并为下一步学习函数的单调性与奇偶性做准备 小 结 1.函数的三种表示方法 2.作函数图象 学生畅谈本节课的收获,老师引导梳理,
17、总结本节课的知识点 梳 理 总结也可针对学生薄弱或易错处进行强 调 和 总结 作 业 教材 P65,练习 A 组第 3 题;练习 B 组第 2 题 稳 固 拓展 3.1.3 函 数 的 单 调 性 【教学目标】1理解函数单调性的概念,掌握判断函数的单调性的方法 2通过教学,使学生领会数形结合的数学方法;培养学生发现问题、分析问题、解决问题的能力 3体验数学的严谨性,渗透由一般到特殊的辩证唯物主义观点【教学重点】函数单调性的概念;学会运用图象法观察函数的单调性和用定义法证明一些函数的单调性【教学难点】利用函数单调性的定义判断和证明函数的单调性【教学方法】这节课主要采用类比教学法和分组教学法教师用
18、问题引导学生从函数图象的变化趋势类比得出增减函数的概念,然后对图象进行代数分析,得出用定义证明函数单调性的步骤从形的直观感知到严密的代数分析,使学生领会数形结合研究函数的方法借助两个证明题,深化学生对单调性概念的理解【教学过程】环节 教学内容 师生互动 设计意图 导 入 从常见的美丽的建筑物图片入手,让学生感知数学的美,激发学生的学习兴趣 师:播放动画,师生共同欣赏后,引导学生观察局部曲线的变化趋势,引入课题 联系实际,激发兴趣 新 课 1课件展示以下函数图象 2增函数与减函数的定义:师:提出问题,引导观察思考:1 观察图象的变化趋势怎样?2 你能看出当自变量增大或减少时函数值如何变化吗?生:
19、观察动画,思考答复 教师引导学生归纳 从图象直观感知函数的单调性 通过观察函数图yf(x)x y O A B f(x1)f(x2)x1 x2 yf(x)x y O A B f(x1)f(x2)x1 x2 新 课 增函数:在给定的区间上自变量增大(减少)时,函数值也随着增大(减少)减函数:在给定的区间上自变量增大(减少)时,函数值也随着减少(增大)3例 1 给出函数 yf(x)的图象,如下图,根据图象指出这个函数在哪个区间上是增函数?在哪个区间上是减函数?解 函数 yf(x)在区间1,0,2,3上是减函数;在区间0,1,3,4上是增函数 4练习 1(1)观察教材 P64 例 1 的函数图象,说出
20、函数在(,)上是增函数还是减函数;(2)观察教材 P65 例 2 的函数图象,分别说出函数在(,0)和(0,)上是增函数还是减函数 5设 yf(x),在给定的区间上,它的图象如图 在此图象上任取两点 A(x1,y1),B(x2,y2),记 增函数与减函数的定义 学生观察图象完成此题,掌握用图象来判断函数单调性的方法 教师强调,在说明函数单调性时,要指出明确的区间 学生答复,教师点评 教师带着学生结合增函数图象分析如何利用函数的解析式来判断一个函数是增函数 象直接给出增函数、减函数的定义,符合学生的特点,容易被学生接受 从观察直观图象入手,加深对单调性定义的理解,掌握用图象法判定函数单调性的方法
21、,使学过的知识及时得到应用 通过练习 1,让学生进一步掌握利用函数的图象来判断函数单调性的方法,从而提高学生的读图能力,并与前面学过的知识结合,对学过的函数有更新的认识 将增函数、减函数定义中的定性说明2 3 x 1 4-1 o y yf(x)x y O A B f(x1)f(x2)x1 x2 新 课 xx2x1,yy2y1 6例 2 证明函数 f(x)3 x2在区间(,)上是增函数 证明 设 x1,x2是任意两个不相等的实数,那么 xx2x1 yf(x2)f(x1)(3 x22)(3 x12)3(x2x1),学生类比分析如何利用函数的解析式来判断一个函数是减函数 教师指出利用函数图象判断单调
22、性的局限性,引导学生从函数解析式入手证明单调性的思路与步骤 教师讲解例题 2,板书详细的解题过程 转化为定量分析从而给出利用函数解析式来判断函数单调性的方法 启发学生思考,完成从直观到抽象、从感性思维到理性思维的升华 在板书例题的过程中,突出解题思路与步骤 通过例题解答,加深对函数单调性定义的理解,并自然而然地将定义运用到判定函数单调性中,理论与实践相辅相成 增函数 自变量增大(x0),函数值增大(y0)yx 0 减函数 自变量增大(x0),函数值增大(y0)yx 0 新 课 yx 3(x2x1)x2x1 0 因此,函数 f(x)3 x2 在区间(,)上是增函数 7 总结由函数的解析式判定函数
23、单调性的步骤:S1 计算 x 和 y;S2 计算 kyx 当 k0 时,函数在这个区间上是增函数;当 k0 时,函数在这个区间上是减函数 8例 3 证明函数 f(x)1x 在区间(0,)上是减函数 证明:设 x1,x2是任意两个不相等的正实数 因为 xx2x1,yf(x2)f(x1)1x2 1x1 2121xxxx 2112xxxx 21xxx 又因为 x1 x20,所以 yx 211xx0 因此,函数 f(x)x1 在区间(0,)上是减函数 9练习 2 证明函数 f(x)3x 在区间(,0)上是减函数 教师引导学生总结解题步骤,可简记为:一设、二求、三判定 学生讨论并试解例题老师点拨、解答学
24、生疑难 学生模仿练习 突出重点,深化证明步骤,分解难点 通过学生讨论、老师点拨,顺利帮助学生判断yx 的正负 稳固用函数解析式来判定单调性的思路和步骤 稳固理解,形成技能 小 结 1.函数单调性的定义;2.判定函数单调性的方法 学 生 阅 读 课 本P6668,畅谈本节课的收获 老师引导梳理,总梳理总结也可针对学生薄弱或易错处进行强调和总结 结本节课的知识点 作 业 教材 P 69,练习 A 组第 2 题;练习 B 组第 1、2 题 稳固拓展 3.1.4 函 数 的 奇 偶 性 【教学目标】1.理解奇函数、偶函数的概念;掌握奇函数、偶函数的图象特征 2.掌握判断函数奇偶性的方法 3.通过教学,
25、渗透数形结合思想,培养学生类比推理的能力,体会由具体到抽象、由特殊到一般的辩证唯物主义思想【教学重点】奇偶性概念与函数奇偶性的判断【教学难点】理解奇偶性概念与奇函数、偶函数的定义域【教学方法】这节课主要采用类比教学法先由两个具体的函数入手,引导学生发现函数 f(x)在 x 与在 x 的函数值之间的关系,由特殊到一般引出奇函数的定义,再由点的对称关系得出奇函数的图象特征然后由学生自主探索,类比得出偶函数定义结合定义与例题总结出判断函数奇偶性的步骤,在解题过程中深化对概念的理解【教学过程】环节 教学内容 师生互动 设计意图 导 入 复习前面所学求函数值的知识 教师提出问题,学生答复 为学生理解奇、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高一数学 1-5章共41份教案 精品全套 数学 人教版中职 教材 基础 模块 上册 教案 41 精品 全套
限制150内