《正态分布示范教案.pdf》由会员分享,可在线阅读,更多相关《正态分布示范教案.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正态分布1 教材分析 正态分布在概率统计学中是一种很重要的分布.一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布.我们知道,离散型随机变量最多取可列个不同值,它等于某一特定实数的概率可能大于0,人们感兴趣的是它取某些特定值的概率,即感兴趣的是其分布列;连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为0,所以通常感兴趣的是它落在某个区间的概率.离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度函数曲线描述.要求同学们学会从离散到连续用函数的观点解决问题.课时分配 本节内容用2课时的时间完成,第一课时主
2、要讲解正态分布的图形特征,归纳正态曲线的性质.3原则放在了第二课时.教学目标 重点:正态分布曲线的特点及其所表示的意义.难点:了解在实际中什么样的随机变量服从正态分布,并掌握正态分布曲线所表示的意义 知识点:通过正态分布的图形特征,归纳正态曲线的性质.能力点:结合正态曲线,加深对正态密度函数的理解.教育点:通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神.自主探究点:讲授法与引导发现法通过教师先讲,师生再共同探究的方式,让学生深刻理解相关概念,领会数形结合的数学思想方法,体会数学知识的形成.考试点:通过正态分布的图形特征,归纳正态曲线的性质.易错易混
3、点:求系数最大项时的约分化简.拓展点:引导发现法.教具准备电子白板,多媒体,高尔顿试验板 课堂模式学案导学 一、创设情境 学生上台演示高尔顿板试验 模拟高尔顿板试验截图 师生活动:创设情境,为导入新知做准备学生感悟体验,对试验的结果进行定向思考学生经过观察小球在槽中的堆积形状发现:下落的小球在槽中的分布是有规律的 设计意图让学生演示试验,能提高学生的学习积极性,提高学习数学的兴趣让学生体验“正态分布曲线“的生成和发现历程 二、探究新知 1用频率分布直方图从频率角度研究小球的分布规律 将球槽编号,算出各个球槽内的小球个数,作出频率分布表 以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比
4、值为纵坐标,画出频率分布直方图.连接各个长方形上端的中点得到频率分布折线图如图 1 师生活动:引导学生思考回顾,教师通过课件演示作图过程在这里引导学生回忆得到,此处的纵坐标为频率除以组距教师提出问题:这里每个长方形的面积的含义是什么 学生经过回忆,易得:长方形面积代表相应区间内数据的频率 设计意图通过把与新内容有关的旧知识抽出来作为新知识的“生长点”,为引入新知搭桥铺路,形成正迁移通过这里的思考回忆,加深对频率分布直方图的理解 随着试验次数增多,折线图就越来越接近于一条光滑的曲线如图2 从描述曲线形状的角度自然引入了正态密度函数的表达式:222,1,2xxex 师生活动:分析表达式特点:解析式
5、中前有一个系数21,后面是一个以e为底数的指数形式,幂指数为222)(x,解析式中含两个常数和e,还含有两个参数和,分别指总体随机变量的平均数和标准差,可用样本平均数和标准差去估计 设计意图该处在学生从形的角度直观认识了正态曲线之后才给出曲线对应的表达式,这样处理能更直观,学生更易理解正态曲线的来源 2继续探究:当我们去掉高尔顿板试验最下边的球槽,并沿其底部建立一个水平坐标轴,其刻度单位为球槽的宽度,用X表示落下的小球第一次与高尔顿板底部接触时的坐标 提出问题:图 3 中阴影部分面积有什么意义 师生活动:引导学生得到:此时小球与底部接触时的坐标X是一个连续型随机变量启发学生回忆:频率分布直方图
6、中面积对应频率,不难理解,图中阴影部分的面积,就可以看成多个矩形面积的和,也就是X落在区间,(ba的频率;再结合定积分的意义,阴影部分面积就是正态密度函数在该区间上的积分值,这样,概率与积分间就建立了一个等量关系 设计意图这个步骤实现了由离散型随机变量到连续型随机变量的过渡通过设疑,引起学生对问题的深入思考,加深对定积分几何意义的理解直接问X落在区间,(ba上的概率,学生不容易反应过来,改为问面积的意义后,便于学生理解该问题 在前面分析的基础上,引出正态分布概念:一般地,如果对于任何实数ab,随机变量X满足:dxxbXaPba,则称X的分布为正态分布,常记作2,N如果随机变量X服从正态分布,则
7、记作2,NX 师生活动:教师在前面分析的基础上引出正态分布的概念,并说明记法引导学生分析得,X所落区间的端点能否取值,均不影响X落在该区间内的概率 设计意图以旧引新,虽概念较抽象,但这样处理学生不会觉得太突兀,易于接受新知识同时培养学生把前后知识联系起来进行思维的习惯 请学生结合高尔顿板试验讨论提出的问题,尝试归纳服从或近似服从正态分布的随机变量所具有的特征:1小球落下的位置是随机的吗 2若没有上部的小木块,小球会落在哪里是什么影响了小球落下的位置 3前一个小球对下一个小球落下的位置有影响吗哪个小球对结果的影响大 4你能事先确定某个小球下落时会与哪些小木块发生碰撞吗 师生活动:学生通过讨论,教
8、师引导学生得出问题的结果:1它是随机的 2竖直落下受众多次碰撞的影响 3互不相干、不分主次 4不能,具有偶然性 然后归纳出特征:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用之和,它就服从或近似服从正态分布 教师列举实例分析,帮助学生更加透彻的理解 设计意图“什么样的随机变量服从或近似服从正态分布”是本节课的难点,采用问题串的方式,将复杂的问题分解成几个容易解决的问题,能有效突破难点同时采用小组讨论的形式,加强学生的合作意识,同时培养他们的辩证观通过举例,让学生体会到生活中处处有正态分布,感受到数学的实际应用 教师通过计算机绘出两组图像动画,让学生观察:第一组:固定的值,取三个不
9、同的数如图 4;第二组:固定的值,取三个不同的数如图 5;师生活动:学生通过观察并结合参数与的意义可得:当一定时,曲线随的变化而沿x平移;当一定时,影响了曲线的形状即:越小,则曲线越瘦高,表示总体分布越集中;越大,则曲线越矮胖,表示总体分布越分散 设计意图针对解析式中含有两个参数,学生较难独立分析参数对曲线的影响,这里通过固定一个参数,讨论另一个参数对图象的影响,这样的处理大大降低了难度,并能很好地突出重点 三、理解新知 引导学生结合三幅图像如图 6 及高尔顿板试验,根据问题归纳正态曲线的性质:曲线在x轴的上方,与x轴不相交;曲线是单峰的,图像关于直线x对称;曲线在x处达峰值21;曲线与x轴之
10、间的面积为1;若固定,随值的变化而沿x轴平移,故称为位置参数;当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中,故称为形状参数.师生活动:引导学生联系三幅图像如图 6,结合高尔顿板试验思考以下问题:曲线在坐标平面的什么位置 曲线为什么与x轴不相交 曲线有没有对称轴 曲线有没有最高点坐标是 曲线与x轴围成的面积是多少 曲线的位置与参数有什么关系 曲线的形状与参数有什么关系 设计意图该环节借助计算机模拟及高尔顿板试验试验结果呈现了教学中难以呈现的课程内容,能很好地锻炼学生观察归纳的能力,体现了归纳分类、化难为易、数形结合的思想 四、
11、运用新知 例 1.下列函数是正态密度函数的是B 22()21.(),(0)2xAf xe 都是实数;222.()2xBf xe;2(1)41.()2 2xCf xe;221.()2xDf xe 师生活动:学生通过观察解析式的结构特征可知只有B选项符合正态密度函数解析式的特点 例 2.标准正态总体的函数为221(),(,).2xf xex 证明()f x是偶函数;求()f x的最大值;利用指数函数的性质说明()f x的增减性 师生活动:学生结合函数知识自行解决问题 设计意图设计这一题主要为了加强学生对正态密度函数的理解 例 3.把一条正态曲线a沿横轴向右平移2个单位,得到一条新的曲线b下列说法中
12、不正确的是D A.曲线b仍然是正态曲线 B.曲线a和曲线b的最高点的纵坐标相同 C.以曲线b为概率密度曲线的总体的均值比以曲线a为概率密度曲线的总体的均值大2 图6D.以曲线b为概率密度曲线的总体的方差比以曲线a为概率密度曲线的总体的方差大2 师生活动:学生易分析知:正态曲线a经过平移仍是正态曲线,峰值不变.而曲线的左右平移与即均值有关故D选项的说法不正确 设计意图通过该例,深化学生对正态曲线的特点及正态分布密度函数表达式中参数与的理解 例 4.某校某次数学考试的成绩X服从正态分布,其密度函数曲线如图 7:写出X的正态密度函数;若参加考试的共1200人满分100分,你能估计及格人数吗 师生活动
13、:学生通过观察图像,可知对称轴60,根据峰值可知8,代入正态曲线表达式可得:12860,2281xex;第二问根据图像利用对称性知及格人数占总参考人数一半 设计意图通过一个贴近生活的实例,让学生体会到数学在实际问题中的应用,培养学生应用所学知识解决问题的能力,激发学习热情体现了数形结合的思想 练习:判断正误:正态密度曲线)(,xy关于直线0 x对称 正态总体)43(N的标准差为4 正态分布随机变量等于一个特定实数的概率为0 若)3(2NX,则)3(XP31 设计意图通过一组判断题,进一步加深学生对正态分布的认识 五、课堂小结 1.知识归纳:正态密度曲线正态分布的意义 正态密度曲线特点正态分布的
14、实例 参数对正态曲线的影响 2.思想方法:数形结合思想 师生活动:教师引导学生从知识内容和思想方法两方面进行课堂小结 最后教师说明:正态分布广泛存在于自然现象、生产和生活实际之中,我们研究它主要还是希望它能服务于我们的生活,那么它在实际中究竟有着怎样的妙用呢 我们下节课继续学习 设计意图通过小结使学生对本节课的知识结构有一个清晰的认识,同时使学生自己内化知识,查漏补缺,使学生在认识上达到一个新的高度 为了更好地突出本节课重点,同时更好地突破难点,考虑到本节课的课堂容量及学生的认知情况,3原则放在了第二课时 六、布置作业 1.必做题设随机变量X服从正态分布)92(N,若)1(cXP)1(cXP,
15、求c的值并写出其正态密度函数解析式 2.必做题以学习小组4人为单位,搜集某项数据资料如某年级学生的身高、体重等仿照课本的方法,研究该数据是否服从或近似服从正态分布 如果是,请估计参数的值 3.选做题在高尔顿板试验中,为什么落在中间球槽的小球最多 七、教后反思 1.数学知识间存在着内在的本质联系,本教案的亮点是充分注意了新旧知识间的内在联系,这样有助于学生理解记忆前后所学知识,并将其融会贯通,从而更好地加以运用 2.本节课的弱项是应用课件进展速度太快,学生思维节奏有点赶不上思维进程.八、板书设计 正态分布 1、正态密度函数 2、正态分布 若对任何实数ba,随机变量X满足 则 称X的 分 布 为 正 态 分 布 常 记 作)(2N若随机变量X服从正态分布,则记为)(2NX 3、正态曲线的特点:1 曲线在x轴上方,与x轴不相交;2 曲线是单峰的,关于直线x对称;3 曲线在x处达到峰值21;4 曲线与x轴之间的面积为1;5 当一定时,曲线随着的变化而沿x轴平移;6当一定时,曲线的形状由确定越小,曲线越“瘦高”,表示总体分布越集中;越大,曲线越“矮胖”,表示总体分布越分散
限制150内