函数概念及其基本性质.pdf
《函数概念及其基本性质.pdf》由会员分享,可在线阅读,更多相关《函数概念及其基本性质.pdf(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第二章 函数概念与基本初等函数 I 一.课标要求:函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.1会用集合与对应的语言来刻画函数,理解函数符号 y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定
2、义域和值域,2.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.3通过具体实例,了解简单的分段函数,并能简单应用.4.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.5.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=ax的符号、意义,能借助计算器或计算机画出具体指数函
3、数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点).8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=logax符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).9知道指数函数y=ax与对数函数y=logax互为反函数(a0,a1),初步了解反函数的概念和f-1(x)的意义.10通过实例,了解幂函数
4、的概念,结合五种具体函数1312,yx yxyxyx的图象,了解它们的变化情况 11通过应用实例的教学,体会指数函数是一种重要的函数模型.12.通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二.编写意图与教学建议 1教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2.教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的
5、训练不做提倡,要准确把握这方面的要求,防止拨高教学.3.函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结 合这一重要数学方法.4.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性.5 教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能
6、联系一些熟悉的事例,以丰富教学的情景创设.6 在学习对数函数图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.教学中重视知识间的迁移与互逆作用.7教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.8.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担.9.教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.10.为
7、体现教材的选择性,在练习安排上加大了弹性,教师应根据学生实际,合理地取舍.三.教学内容及课时安排建议 本章教学时间约 23 课时:21 函数的概念与图象 10 课时 22指数函数 5 课时 23 对数函数 5 课时 24 幂函数 2 课时#25 函数与方程 3 课时 26 函数模型及其应用 3 课时 数学探究案例钢琴与指数曲线 1 课时 实习作业 1 课时 小结与复习 2 课时 2.1.1 函数的概念和图象概念 一、教学目标 1、知识与技能:了解函数产生的背景,掌握函数的概念、,特别是函数的三要素。会判断什么样的对应,是函数。会求简单函数的定义域及值域。2、过程与方法:(1)通过实例,进一步体
8、会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域。3、情态与价值:使学生感受到学习函数的必要性的重要性,激发学习的积极性。二、教学重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;三、学法与教学用具 1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节教学目标.?2、教学用具:投影仪.四、教学思路(一)创设情景 1、复习初中所学函数的概念,强调函数的模型化思想;
9、2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)人口数量与时间(年份)的变化关系问题;(2)自由落体下落的距离与下落时间的变化关系问题;(3)某市一天的气温与时间的变化关系问题 3、分析、归纳以上三个实例,它们有什么共同点。4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系如何用集合的语言来描述:(二)探求新知 1、函数的有关概念(1)函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合 A 中的任意一个 数 x,在集合 B 中都有唯一的元素y和它对应,
10、那么就称f:AB 为从集合 A 到集合 B 的一个函数(function)记作:y=f(x),xA 其中,x叫做自变量,x的取值范围 A 叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA 叫做函数的值域(range)强调:任意性;唯一性。思考:课本例 1,对照定义说明理由。注意:“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x (2)初中学过哪些函数它们的定义域、值域、对应法则分别是什么.一次函数:y=ax+b (a0);二次函数:y=ax2+bx+c
11、 (a0);反比例函数:y=xk (k0)(3)函数三要素:由定义,构成函数需要几个要素 如果一个函数的定义域、对应法则确定,则其值域是否确定 如果定义域、值域确定,函数是否确定为什么试举例说明。例:,;,.yx xR yx xR 由此,两个函数相同的条件是什么 思考:函数,yf xxA与函数,sf ttA是同一函数吗 函数yx与2xyx是同一函数吗 2函数的定义域-如果函数对应法则可以用解析式表示出来,那么要确定这个函数,还必须给出定义域。如果给出了解析式,但未给出定义域,那么我们就认为其定义域就是使其解析式有意义的x的取值集合。例:求函数f(x)=3x+21x的定义域。设一个矩形周长为 8
12、0,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.引导学生小结几类函数的定义域:如果f(x)是整式,那么函数的定义域是实数集 R.如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数集合.如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)满足实际问题有意义.3函数的解析式 函数“yf x”表示y是x的函数,可简记为 f x,这里“f”即对应法则;“f”是一个记号,在不同的函数中具有不同的意义;如果在同一问题中涉及多个函数,为了区别,
13、也常用 g x、h x、x、F x等等来表示;当自变量x在定义域内取某一确定的值a时,对应的函数值用 f a来表示,如:21f xx,则 21f aa,13f 4函数的值域 例:求下列函数的值域 211,1,0,1,2,3f xxx;211f xx。由此,进一步强调函数值域的意义。(三)学以致用 例 1 下列各组函数中,表示同一函数的是 ()A 2,f xx g xx B 33,f xx g xx C 1,xf xg xx D 01,f xg xx 强调:从函数的三要素入手,在定义域、值域和对应法则中,只要有一个不同,就不 是同一函数 例 2 已知 221,2.f xxg xx 求 1fg;求
14、 2f a、1g a;若 fg xgf x,求x的值。强调:准确理解对应法则“f”的意义。例3 求下列函数的定义域:f(x)=24xx;()131f xxx;1()11f xx;1()|f xxx。强调:求函数定义域的几个原则;函数的定义域一般应用集合或区间表示(四)巩固深化 课本练习第 37 题 (五)归纳小结 从具体实例引入函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;初步介绍了求函数定义域和判断同一函数的基本方法。(六)承上启下 1、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。2、课课练第 1、2 课时。2.1.1
15、 函数的概念和图象定义域和值域 一、教学目标 2、知识与技能:(1)进一步理解函数的概念。】(2)会求函数特别是复合函数的定义域。(3)掌握求函数值域的常见方法。2、过程与方法:(1)通过实例,学会求函数复合函数的定义域,进一步家深对函数概念的理解。(2)在复习初中已学函数的基础上,经历求函数值域的过程,掌握常见方法。3、情态与价值:让学生感受数形结合、等价转化等数学思想,激发学习的积极性。二、教学重点与难点:重点:函数值域的常见方法。难点:复合函数的定义域,判别式法的发现。三、学法与教学用具 1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节教学目标.2、教学用具:投影仪.四
16、、教学思路(一)创设情景 复习初中所学函数,说出它们的定义域、值域,并说明如何得到(二)探求新知 1、函数的定义域 例 1求下列函数的定义域:2f xxx;01xf xxx 变题 1:若 2f xxx,求 2f x的定义域。变题 2:若 f x的定义域是 0,1,则 2f x的定义域是_。练习:若 f x的定义域是 0,1,则1f x的定义域是_。、若 f x的定义域是1,3,则 g xf xfx的定义域是_。思考:若 f x的定义域是 D,则 fx的定义域是_。2函数的值域 例 2求下列函数的值域:1,1,1yxx ;22yxx;1.1yx 变题 1:函数121yx的值域是_.变题 2:函数
17、211xyx的值域是_.思考:一般地,函数axbycxd的值域是_.例 3求函数21xyxx的值域 思考 1 根据函数关系你能在值域 C 中找到几个值吗例如C0C1为什么 思考 2 有谁找到了一个数不在 C 中呢又为何#思考 3 由此,给定一个值 y,你怎样来判断它是否是值域 C 中的元素呢(只需判断关于 x 的方程yxxx12是否在定义域内有实数解就可以了).解:由21xyxx得210yxyxy 若0y,则0 x,方程有解,0y在函数值域中;若0y,为使方程有解,只须22140yy,解得113y0y 综合得,所求函数的值域是1,13 指出:从函数概念看,函数)(xfy 的值域就是定义域中任一
18、自变量 x 在对应法则“f”作用下的象的集合,即值域 C 中每一个 y 的值,根据对应法则“f”都有原象 x 与之对应.因此,函数)(xfy 的值域就是使方程yxf)(在定义域内有解的y的取值范围.如果此方程是关于 x 的二次方程,则方程有解的充要条件就是判别式0,由此求出函数的值域.这种求函数值域的方法,我们叫做“判别式法”.一般地,二次分式函数21112222a xb xcya xb xc 2212aa 0,常化为关于x的二次方程,然后根据方程有解的条件,利用判别式法求解。思考 4:如何求函数22211xxyx的值域 注意:如果分子分母可约,一般不采用判别式法,而是转化为型如0cxdyaa
19、xb的函数求值域 例 4:求函数1yxx的值域 *分析:本题中所给函数是无理函数,一般应考虑有理化你是否试图通过移项平方来实施这样做往往会使函数的定义域扩大,从而影响函数的值域,处理时要特别细心能否通过其他方法来实现有理化呢换元!是我们常用的手段之一 解:设1tx,则21xt,2215124yttt ,其中10tx 画出二次函数21524yt 在0,上的图象(如图)可见,当0t 时y取得最大值 1,所以原函数的值域是,1 指出:1换元法是处理无理函数问题时常用的方法 2本题中在得到关于t的二次函数后,由于其定义域不是 R,而是0,,这时应结合二次函数的图象观察得出结果如果忽视了定义域问题,得出
20、54y,那就错了!3请你思考下面的问题:引申:若关于x的方程1xxa有解,求常数a的取值范围 析 设函数 1fxxx,则方程 f xa何时有解等价于:当a取何值时,在函数 f x的定义域中存在自变量x与之对应由函数值域的定义可知,所求a的取值范围就是函数 f x的值域,a的取值范围就是,1(三)巩固深化 1若函数 yf x的定义域是1,32,则函数 2fx的定义域是 2求函数3212xxxy的值域 y t 54 1 O 12 (四)归纳小结、通过本课的学习,你学会了哪些知识 具体解题时应注意哪些问题(五)布置作业 1下列四个函数:1yx;21yx;21yx;3yx其中,定义域和值域相同的是 (
21、)A B C D 2有下列四个命题:21yx的值域是|0y y;2yx2xRx且的值域是|04y yy 且;211xyx的值域是 R;231yxx的值域是|0y y其中正确命题的个数是 ()A1 B2 C3 D4 3函数114yxxxZ且的值域是 4若函数211xyx的值域是,0,则其定义域是 5求下列函数的定义域:!23412xxfxx;1111f xx 6求下列函数的值域:3012xyxx;2211xyx;26yxx 7已知函数 f x的定义域为1,1,求函数1144yfxfx的定义域 8求下列函数的值域:23413yxx;3212xxxy。2.1.2 函数的表示法(1)解析法 一教学目标
22、 1知识与技能(1)明确函数的三种表示方法及其优点;(2)明确函数解析式的意义,能根据条件求函数的解析式。2过程与方法:通过具体实例,掌握求函数解析式的常见方法。3情态与价值 让学生感受到学习函数表示的必要性,渗透分类、转化等数学思想方法。二教学重点和难点 教学重点:求函数解析式的常见方法。教学难点:能根据条件进行恰当分类,能准确注明函数的定义域。三学法及教学用具 1学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标 2教学用具:圆规、三角板、投影仪 四教学思路 (一)创设情景 前课学习了函数定义域、值域的求法,作业中还有哪些问题需要再一起共同讨论 回顾本节开头三个函数的例子
23、,你觉得表示一个函数有哪些方法(二)探求新知 1.函数的表示法 函数有哪些表示方法 表示函数的方法常用的有:解析法、列表法、图象法三种 三种方法各有何特点$解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域 列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值。图像法的特点是:能直观形象地表示出函数的变化情况)阅读课本例 1:某种笔记本的单价是 5 元,买(1,2,3,4,5)x x个笔记本需要y元,试用三种表示法表示函数()yf x 2求函数解析式的方法 例 1根据下列条件,求函数 f x的解析式:已知12fxxx
24、,求 f x;已知 f x是一次函数,且 98ffxx,求 f x;已知 3225f xfxx,求 f x 解:设1tx,则1xt,221211f tttt,11tx,21 1f xxx -设 0f xaxba,则 2ffxafxba axbba xabb,由 298a xabbx 得2339248aaabbabb 或 3234f xxf xx 或 在 3225fxfxx 中,以x换x得 3225fxf xx 由,消去fx得 21f xx 指出:求解析式的方法较多,关键是根据题目特点灵活进行选择,如本例中的 3 个小题分别采用了换元法、待定系数法和消元法 求函数解析式时,同时要注明函数的定义域
25、 在用换元法求解时,最后得到的 f x的 解析式中,自变量 x 实际上是由 t“换”来的,因此必须由 t 的范围来确定 f x的定义域 例 2已知函数 f x满足2211fxxxx 求 f x的解析式;求 f x的定义域、值域 析:本题若采用换元法,令1txx,则难以用t来表示出x,注意到2112fxxxx,从而 22fxx.为确定函数的定义域,必须求出1txx的值域,可考虑用判别式法:|由1txx,得:210 xtx 由240t,得22tt或,f x的定义域是,22,,又24x,222fxx,即值域为2,指出:此题是先“配凑”再换元,要特别注意其定义域 例3 设 f(x)是 R 上 的 函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 概念 及其 基本 性质
限制150内