数学建模-食品价格分析论文.pdf
《数学建模-食品价格分析论文.pdf》由会员分享,可在线阅读,更多相关《数学建模-食品价格分析论文.pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、欢迎品鉴,希望能帮到您!可编辑 摘 要 本文主要运用谱系聚类分析、灰色预测、主成分分析的思想。运用 SPSS 软件进行谱系聚类和主成分分析,MATLAB 软件计算相关矩阵,建立了聚类分析模型、GM(1,1)模型和主成分分析模型,分别讨论了 2016 年 1 月-5 月 50 个城市主要食品价格的分类和价格变动的差异、预测 2016 年 6 月各类食品价格以及通过监测尽量少的食品种类预测计算居民消费者价格指数变动。针对问题一,首先对涉及的主要食品进行分类,将数据进行处理,然后利用谱系聚类分析模型,结合系统聚类,采用 SPSS 软件将 27 种食品分为 4 类,利用 EXCEL 分别作出四大类食品
2、的价格随时间变化的折线图,分析食品价格波动的特点。针对问题二,基于问题一中的食品分类,分别以每类的食品价格为序列建立灰色预测模型。先进行数据的检验与处理,对原始数据进行一次累加,使数据有较强的规律性,进而建立灰微分方程,再利用 MATLAB 软件求解模型。并依次进行残差检验及后验查检验,均有C0.35,预测精度较好。最后通过函数预测 2016 年 6 月价格走势。针对问题三,我们通过所给数据及查找的数据,利用主成分分析法,分析得出 27 种食品种类中的主成分分别为芹菜,带鱼,鸡(白条鸡),鸭,大白菜。故得到可以通过检测少量食品种类,就能相对精确地预测 CPI 数值。经过对地域特点的考察,选取上
3、海和沈阳两地,通过查找相关 CPI 和食品价格数据,用 spss 软件运用主成分分析法,得出对 CPI 影响大的几类食品,然后通过 matlab 算法算出权重,再由所得数据和图表的分析比较得到,不同地区应选取不同的食品种类进行检测。关键词:谱系聚类法,灰色预测,主成分分析,SPSS 软件,MATLAB 软件。欢迎品鉴,希望能帮到您!可编辑 一、问题重述 食品价格是居民消费价格指数的重要组成部分,食品价格波动直接影响居民生活成本和农民收入,是关系国计民生的重要战略问题。2000 年以来,我国城镇居民家庭食品消费支出占总支出的比重一直维持在 36%以上。在收入增长缓慢的情况下,食品价格上涨将使人民
4、群众明显感到生活成本增加,特别是食品价格上涨将降低低收入群体的生活质量。居民消费者价格指数(CPI),是根据与居民生活有关的产品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标。根据附件上的信息,并查找上海和沈阳的相关资料,建立数学模型解决以下问题:(1)根据附件以及相关统计网站的数据,分析我国食品价格波动的特点。(2)对 2016 年 6 月份食品价格走势进行预测。(3)目前统计部门需要监测大量食品价格变动情况以计算居民消费者价格指数变动情况,能否仅仅通过监测尽量少的食品种类价格即能相对准确地计算、预测居民消费者价格指数?在同样精度要求下,两个不同地区所选取的食品种类以及
5、种类数目是否一致?二、问题分析 居民消费者价格指数是一个波动的量,它客观地表示了通货膨胀的水平,食品价格是消费者价格水平的重要组成部分,要解决以上三个问题必须要弄清楚食品价格的变化规律。针对问题一,要求根据已知的统计数据,分析出我国食品价格波动的特点。由此可以看出食品价格是本题的主要分析研究的对象。但由于已知的食品种类有 27 种,数据量比较庞大,如果逐个分析每一种食品价格的波动情况,势必导致过程繁琐。因此可以先对 27 种食品进行分类,分类的依据是各食品价格间的关联程度。由于每一类的食品价格均具有相同的走势,因此可以逐类分析即可得出我国食品价格的波动情况。针对问题二,要求预测 2016 年
6、6 月食品价格的走势,可以在问题一的基础上预测每个大类的食品价格走势,因为每类中各种食品的价格走势大致一样。然后采用 GM(1,1)灰色预测模型求解预测之后对价格进行预测分析。针对问题三,我们通过所给数据及查找的数据,用 spss 软件利用主成分分析法,分析得出27 种食品种类中的主成分分,故得到可以通过检测少量食品种类,就能相对精确地预测 CPI数值。并选取较具特点的两个城市,通过查找相关 CPI 和食品价格数据,进行同样的操作,比较食品种类,数目是否一致。三、模型假设(1)收集到的相关的数据都准确可靠,可信度高;(2)食品零售价格每十天的平均价格与食品日平均价格的偏差很小,可以忽略不计;(
7、3)食品的分类是按照价格走势来划分的,同一类的食品价格的变化幅度可能有所不同,假设只要满足相同的价格走势即可;(4)假设在预测时间段内不存在经济发展状况、突发状况(如自然灾害)等能是食品价格波动显著的因素。四、符号说明:第 i 种食物在第 j 个时间点的价格:p,q 两类间的距离(0):时间序列的原始数据 欢迎品鉴,希望能帮到您!可编辑(1):对原始数据进行一次累加后的数据欢迎品鉴,希望能帮到您!可编辑:一次累加后的数据估计值与原始数据的一次累加数据的残差的方差:原始数据(0)的方差 五、模型建立与求解 5.1 建立谱系聚类分析模型 该问题要求根据已知的统计数据,分析出 50 个城市食品价格波
8、动的特点。因此从题目的要求中我们可以看到,食品的价格波动是我们要分析研究的对象,但根据附件中的数据可知食品的种类有 27 种,数据量比较庞大,如果逐个分析每一种食品的价格波动情况,势必会导致过程繁琐,无概括性和简洁性。因此可以先对 27 种食品进行分类,分类的根据是食品价格涨幅间的相关程度。由于每一类食品的价格均具有相同的走势,因此可以逐类分析,即可得出 50 个城市食品价格的波动情况并能找出之间的差异性。5.1.1 系统聚类模型 设有 n 个样品,即本题中有 27 个食品种类,每个样品根据时间顺序测得 m 个值,设时间为指标。得到观测数据xij(i=1,2,,n;j=1,2,,m)。表中数据
9、称为观测数据阵,其数学表达式为 =11 11 其中列向量Xj=(x1j,x2j,,xnj)T表示第 j 个变量(j=1,2,,m);行向量Xi=(xi1,xi2,,xim)表示第 i个。(1)系统聚类法的基本思想 距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。系统聚类过程是:假设总共有 n 个样品(或变量),第一步将每个样品(或变量)独自聚成一类,共有 n 类;第二步据所确定的样品(或变量)“距离”公式,把距离较近的两个样品(或变量)聚合成一类,其他的样品(或变量)仍各自聚为一类,共聚成 n-1 类;第三步将“距离”最近的两个类进
10、一步聚成一类,共聚成 n-2 类;以上步骤一直进行下去,最后将所有的样品(或变量)聚成一类。为了直观地反映以上的系统聚类过程,可以把整个分类系统地画成一张谱系图。所以有时系统聚类也称为谱系分析。(2)系统聚类法的基本步骤 1、选择聚类方法 类平均法定义类间距离平方为这两类元素两两之间距离平方的平均数,即为:2=12 设聚类的某一步将GP和Gq合并为Gr,则任一类Gk与Gr的距离为:2=12 =1(2+2)欢迎品鉴,希望能帮到您!可编辑 =2+2 2、系统聚类过程 1)假设总共有 n 个样品(或变量),第一步将每个样品(或变量)独自聚成一类,共有 n 类。2)据所确定的样品(或变量)“距离”公式
11、,把距离较近的两个样品(或变量)聚合成一类,其他的样品(或变量)仍各自聚为一类,共聚成 n-1 类。3)将“距离”最近的两个类进一步聚成一类,共聚成 n-2 类。以上步骤一直进行下去,最后将所有的样品(或变量)聚成一类。4)画谱系聚类图。5)决定分类的个数及各类的成员。(3)谱系聚类类数的确定 由适当的阀值确定选定聚类方法,按系统聚类的方法并类后,得到一张谱系聚类图,聚类图只反映样品间的亲疏关系,它本身并没有给出分类,需要给定一个临界相似尺度,用以分割聚类图而得到样品的分类,如给定临界值 d,那么,当样品间或已并类间距离小于 d 时,认为这些样品和类的关系密切,应当归属一类。5.1.2 50
12、个城市的食品分类 又上面的谱系聚类法步骤可知:首先确定 50 个城市食品进行分类的指标是同一类食品应具有相同的跌涨幅,然后根据系统聚类分析模型才用类平均法进行分类,再利用结果确定分类个数,画出各类食品的价格折线图,由图分析食品价格增长情况。根据附件 1,此资料为 50 个城市在 2016 年 1 月 1 日至 2016 年 5 月 10 日 27 种食物价格表和涨幅表,利用 spss 软件对涨幅表数据进行系统聚类得出分类结果。(1)从谱系图(如图 1 所示)中可以看出,分为 4 类的结果为(如表 1 所示):欢迎品鉴,希望能帮到您!可编辑 图 1 类平均法谱系聚类图(2)食品分类的最终结果:第
13、一类 大白菜 第二类 黄瓜,西红柿 第三类 豆角 第四类 大米,面粉(富强粉),面粉(标准粉),豆制品,花生油,大豆油,菜籽油,猪肉(后腿肉),猪肉(五花肉),牛肉,羊肉,鸡(白条鸡),鸡(鸡胸肉),鸭,鸡蛋,活鲤鱼,活草鱼,带鱼,油菜,芹菜,土豆,苹果,香蕉 表 1 食品分类表 5.1.3 每类食品价格波动特点分析(1)价格走势图 为了进一步说明各种食物归类的合理性以及各类食物的均价走势特点,现结合各类食品欢迎品鉴,希望能帮到您!可编辑 的均价走势欢迎品鉴,希望能帮到您!可编辑 图加以更为直观的说明,由于第四类所包含的食品种类相对较多,则选取所有食品的均价走势作图,而第一类,第三类各自只包含
14、一种食物,故只需做出每种食品的均价走势图即可,走势图及每类食品的特点如下图 2 所示。图 2 食品分类图(2)价格波动特点分析 第一类食品在这段时间内,平均价格在 3.5 附近不停变化,波动幅度大致为 1.5,这类食物总体价格是呈缓慢上升趋势的。第二类食品在这段时间内,平均价格在 8 附近不停变化,波动幅度大致为 2,这类食物价格总体是呈下降趋势的。第三类食品在这段时间内,平均价格在 14 附近不停变化,波动幅度大致为 4,中间时间段有较大幅涨价,这类食物价格不太稳定。0123456123456789 10 11 12 13第一类0510152012345678910第三类17.51818.5
15、1919.512345678第四类024681012123456789 10 11 12 13第二类欢迎品鉴,希望能帮到您!可编辑 第四类食品在这段时间内,平均价格在 18.9 附近不停变化,波动幅度大致为 0.5,价格总体比较稳定,这类食物价格变化不大。5.2 运用灰色预测模型 GM(1,1)对 2016 年 6 月份食品价格走势进行预测 要求预测 2016 年 6 月食品价格的走势。因为每类中各种食物的价格走势大致一样,如果对 27 种食品中每一种都进行预测,显然过程繁琐,也没有代表性和统一性,而问题一将27 种食品分成 4 类,所以用每个大类食品价格的走势替代大类中的各种食品价格的走势。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 食品 价格 分析 论文
限制150内