高考数学压轴题解题技巧和方法修订版.pdf
《高考数学压轴题解题技巧和方法修订版.pdf》由会员分享,可在线阅读,更多相关《高考数学压轴题解题技巧和方法修订版.pdf(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 高考数学压轴题解题技巧和方法修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】圆锥曲线的解题技巧 一、常规七大题型:(1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)xy11,(,)xy22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。如:(1))0(12222babyax与直线相交于 A、B,设弦 AB 中点为 M(x0,y0),则有02020kbyax。(2))0,0(12222babyax与直线 l 相交于 A、B,设
2、弦 AB 中点为 M(x0,y0)则有02020kbyax(3)y2=2px(p0)与直线 l 相交于 A、B 设弦 AB 中点为 M(x0,y0),则有 2y0k=2p,即y0k=p.典型例题 给定双曲线xy2221。过 A(2,1)的直线与双曲线交于两点P1 及P2,求线段P1P2的中点 P 的轨迹方程。(2)焦点三角形问题 椭圆或双曲线上一点 P,与两个焦点F1、F2构成的三角形问题,常用正、余弦定理搭桥。典型例题 设 P(x,y)为椭圆xayb22221上任一点,Fc10(,),F c20(,)为焦点,PF F12,PF F21。(1)求证离心率sinsin)sin(e;(2)求|PF
3、PF1323的最值。(3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。典型例题 抛物线方程,直线与 轴的交点在抛物线准线的右边。yp xpxytx210()()(1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为 A、B,且 OAOB,求 p 关于 t 的函数 f(t)的表达式。(4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。
4、若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。(1),可以设法得到关于 a 的不等式,通过解不等式求出 a 的范围,即:“求范围,找不等式”。或者将 a 表示为另一个变量的函数,利用求函数的值域求出a 的范围;对于(2)首先要把NAB 的面积表示为一个变量的函数,然后再求它的最大值,即:“最值问题,函数思想”。最值问题的处理思路:1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是由方程求 x、y 的范围;2、数形结合,用化曲为直的转化思想;3、
5、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;4、借助均值不等式求最值。典型例题 已知抛物线 y2=2px(p0),过 M(a,0)且斜率为 1 的直线 L 与抛物线交于不同的两点A、B,|AB|2p(1)求 a 的取值范围;(2)若线段 AB 的垂直平分线交 x 轴于点 N,求NAB 面积的最大值。(5)求曲线的方程问题 1曲线的形状已知-这类问题一般可用待定系数法解决。典型例题 已知直线 L 过原点,抛物线 C 的顶点在原点,焦点在x 轴正半轴上。若点 A(-1,0)和点 B(0,8)关于 L 的对称点都在 C 上,求直线 L 和抛物线 C 的方程。2曲线的形状未
6、知-求轨迹方程 典型例题 已知直角坐标平面上点Q(2,0)和圆 C:x2+y2=1,动点M 到圆 C 的切线长与|MQ|的比等于常数(0),求动点M 的轨迹方程,并说明它是什么曲线。(6)存在两点关于直线对称问题 在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)典型例题 已知椭圆 C 的方程xy22431,试确定 m 的取值范围,使得对于直线yxm4,椭圆 C 上有不同两点关于直线对称(7)两线段垂直问题 圆锥曲线两焦半径互相垂直问题,常用kkyyxx1212121 来处理或用向量
7、的坐标运算来处理。典型例题 已知直线l的斜率为k,且过点P(,)2 0,抛物线C yx:()241,直线l与抛物线 C 有两个不同的交点(如图)。(1)求k的取值范围;(2)直线l的倾斜角为何值时,A、B 与抛物线 C 的焦点连线互相垂直。四、解题的技巧方面:在教学中,学生普遍觉得解析几何问题的计算量较大。事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。下面举例说明:(1)充分利用几何图形 解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。典
8、型例题 设直线340 xym与圆xyxy2220相交于 P、Q 两点,O 为坐标原点,若OP OQ,求m的值。(2)充分利用韦达定理及“设而不求”的策略 我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。典型例题 已知中心在原点 O,焦点在y轴上的椭圆与直线yx1相交于 P、Q 两点,且OP OQ,|PQ 102,求此椭圆方程。(3)充分利用曲线系方程 利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。典型例题 求经过两已知圆Cxyxy122420:和Cxyy22224:0 的交点,且圆心在直线l:2410 xy上的圆的方程。(4)充分利用
9、椭圆的参数方程 椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题这也是我们常说的三角代换法。典型例题 P 为椭圆22221xyab上一动点,A 为长轴的右端点,B 为短轴的上端点,求四边形 OAPB 面积的最大值及此时点 P 的坐标。(5)线段长的几种简便计算方法 充分利用现成结果,减少运算过程 一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程ykxb代入圆锥曲线方程中,得到型如axbxc20的方程,方程的两根设为xA,xB,判别式为,则|ABkxxAB12|12ak,若直接用结论,能减少配方、开方等运算过程。例 求直线xy10被椭圆xy22416所截
10、得的线段 AB 的长。结合图形的特殊位置关系,减少运算 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。例 F1、F2是椭圆xy222591的两个焦点,AB 是经过F1的弦,若|AB 8,求值|22BFAF 利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离 例 点 A(3,2)为定点,点 F 是抛物线yx24的焦点,点 P 在抛物线y2 4x上移动,若|PAPF取得最小值,求点 P 的坐标。圆锥曲线解题方法技巧归纳 第一、知识储备:1.直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。(2)与直线相关的重
11、要内容 倾斜角与斜率tan,0,)k 点到直线的距离0022AxByCdAB 夹角公式:212 1tan1kkk k(3)弦长公式 直线ykxb上两点1122(,),(,)A x yB xy间的距离:2121ABkxx 221212(1)()4kxxx x 或12211AByyk(4)两条直线的位置关系 1212llk k=-1 212121/bbkkll且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)xymnmnmn且 距离式方程:2222()()2xcyxcya 参数方程:cos,sinxayb(2)、双曲线的方程的形式有两种 标准方程:22
12、1(0)xym nmn 距离式方程:2222|()()|2xcyxcya(3)、三种圆锥曲线的通径你记得吗?(4)、圆锥曲线的定义你记清楚了吗?如:已知21FF、是椭圆13422yx的两个焦点,平面内一个动点 M 满足221 MFMF则动点 M 的轨迹是()A、双曲线;B、双曲线的一支;C、两条射线;D、一条射线(5)、焦点三角形面积公式:122tan2F PFPb在椭圆上时,S(其中2221212121212|4,cos,|cos|PFPFcFPFPFPFPFPFPFPF)(6)、记住焦半径公式:(1)00;xaexaey椭圆焦点在 轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”
13、。(2)0|xe xa双曲线焦点在 轴上时为 (3)11|,|22ppxxy抛物线焦点在 轴上时为焦点在y 轴上时为(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备 1、点差法(中点弦问题)设11,yxA、22,yxB,baM,为椭圆13422yx的弦AB中点则有 1342121yx,1342222yx;两式相减得 03422212221yyxx 3421212121yyyyxxxxABk=ba43 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及
14、根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x yB xy,将这两点代入曲线方程得到12 两个式子,然后1-2,整体消元,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点 A、B、F 共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为ykxb,就意味着 k 存在。例 1、已知三角形 ABC 的三个顶点均在椭圆805422yx上,且点 A 是椭圆短轴的一个端点(点 A 在 y 轴正半轴上).(1)若三角形 ABC 的重心是椭圆的右焦点,试求直线BC 的方程;(2)若角 A 为090,AD 垂直 BC
15、 于 D,试求点D 的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦 BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为090可得出 ABAC,从而得016)(14212121yyyyxx,然后利用联立消元法及交轨法求出点D 的轨迹方程;解:(1)设 B(1x,1y),C(2x,2y),BC 中点为(00,yx),F(2,0)则有11620,1162022222121yxyx 两式作差有 016)(20)(21212121yyyyxxxx04500kyx (1)F(2,0)为三角形重心,所以由2321 xx,得30 x,由03421 yy得20y,代入(1)得
16、56k 直线 BC 的方程为02856 yx 2)由 ABAC 得016)(14212121yyyyxx (2)设直线 BC 方程为8054,22yxbkxy代入,得080510)54(222bbkxxk 2215410kkbxx,222154805kbxx 2222122154804,548kkbyykkyy 代入(2)式得 0541632922kbb,解得)(4 舍b或94b 直线过定点(0,)94,设 D(x,y),则1494xyxy,即016329922yxy 所以所求点 D 的轨迹方程是)4()920()916(222yyx。4、设而不求法 例 2、如图,已知梯形 ABCD 中CDA
17、B2,点 E 分有向线段AC所成的比为,双曲线过C、D、E 三点,且以 A、B 为焦点当4332时,求双曲线离心率e的取值范围。分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。建立直角坐标系xOy,如图,若设 Chc,2,代入12222byax,求得h,进而求得,EExy再代入12222byax,建立目标函数(,)0f a b c,整理(,)0f e,此运算量可见是难上加难.我们对h可采取设而不求的解题策略,建立目标函数(,)0f a b c,整理(,)0f e,化繁为简.解法一:如图,以 AB 为垂直平分线为y轴,直线 AB
18、为x轴,建立直角坐标系xOy,则 CDy轴因为双曲线经过点 C、D,且以 A、B 为焦点,由双曲线的对称性知 C、D 关于y轴对称 依题意,记 A0 ,c,Chc,2,E00,yx,其中|21ABc 为双曲线的半焦距,h是梯形的高,由定比分点坐标公式得 122120cccx,10hy 设双曲线的方程为12222byax,则离心率ace 由点 C、E 在双曲线上,将点C、E 的坐标和ace 代入双曲线方程得 14222bhe,11124222bhe 由式得 14222ebh,将式代入式,整理得 214442e,故 1312e 由题设4332得,43231322e 解得 107 e 所以双曲线的离
19、心率的取值范围为10,7 分析:考虑,AEAC为焦半径,可用焦半径公式,AEAC用,E C的横坐标表示,回避h的计算,达到设而不求的解题策略 解法二:建系同解法一,,ECAEaexACaex,22121Ecccx,又1AEAC,代入整理1312e,由题设4332得,43231322e 解得 107 e 所以双曲线的离心率的取值范围为10,7 5、判别式法 例 3 已知双曲线122:22xyC,直线l过点0,2A,斜率为k,当10 k时,双曲线的上支上有且仅有一点 B 到直线l的距离为2,试求k的值及此时点 B 的坐标。分析 1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是
20、研究解析几何问题的重要手段.从“有且仅有”这个微观入手,对照草图,不难想到:过点 B 作与l平行的直线,必与双曲线 C 相切.而相切的代数表现形式是所构造方程的判别式0.由此出发,可设计如下解题思路:10)2(:kxkyl 解题过程略.分析 2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点 B 到直线l的距离为2”,相当于化归的方程有唯一解.据此设计出如下解题思路:简解:设点)2,(2xxM为双曲线 C 上支上任一点,则点M 到直线l的距离为:于是,问题即可转化为如上关于x的方程.由于10 k,所以kxxx22,从而有 于是关于x的方程 由10 k可知:直线l在l
21、的上方且到直线l的距离关于x的方程10212222kkkxkx 方程 022)1(22)1(22122222kkxkkkxk的二根同正,故02)1(22kxkk恒成立,于是 等价于 022)1(22)1(22122222kkxkkkxk.由如上关于x的方程有唯一解,得其判别式0,就可解得 552k.点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.例 4 已知椭圆 C:xy2228和点 P(4,1),过 P 作直线交椭圆于A、B 两点,在线段 AB 上取点 Q,使APPBAQQB,求动点 Q 的轨迹所在曲线的方程.分析:这是一个轨迹问题,解题困难在于多动点的困
22、扰,学生往往不知从何入手。其实,应该想到轨迹问题可以通过参数法求解.因此,首先是选定参数,然后想方设法将点Q 的横、纵坐标用参数表达,最后通过消参可达到解题的目的.由于点),(yxQ的变化是由直线 AB 的变化引起的,自然可选择直线 AB 的斜率k作为参数,如何将yx,与k联系起来?一方面利用点 Q 在直线 AB 上;另一方面就是运用题目条件:APPBAQQB 来转化.由 A、B、P、Q 四点共线,不难得到)(82)(4BABABAxxxxxxx,要建立x与k的关系,只需将直线 AB 的方程代入椭圆 C 的方程,利用韦达定理即可.通过这样的分析,可以看出,虽然我们还没有开始解题,但对于如何解决
23、本题,已经做到心中有数.在得到 kfx 之后,如果能够从整体上把握,认识到:所谓消参,目的不过是得到关于yx,的方程(不含k),则可由1)4(xky解得41xyk,直接代入 kfx 即可得到轨迹方程。从而简化消去参的过程。简解:设),(),(,2211yxQyxByxA,则由QBAQPBAP可得:xxxxxx212144,解之得:)(82)(4212121xxxxxxx (1)设直线 AB 的方程为:1)4(xky,代入椭圆 C 的方程,消去y得出关于 x 的一元二次方程:08)41(2)41(412222kxkkxk (2).128)41(2,12)14(42221221kkxxkkkxx
24、代入(1),化简得:.234kkx (3)与1)4(xky联立,消去k得:.0)4(42xyx 在(2)中,由02464642kk,解得 41024102k,结合(3)可求得.910216910216x 故知点 Q 的轨迹方程为:042 yx (910216910216x).点评:由方程组实施消元,产生一个标准的关于一个变量的一元二次方程,其判别式、韦达定理模块思维易于想到.这当中,难点在引出参,活点在应用参,重点在消去参.,而“引参、用参、消参”三步曲,正是解析几何综合问题求解的一条有效通道.6、求根公式法 例 5 设直线l过点 P(0,3),和椭圆xy22941顺次交于 A、B 两点,试求
25、APPB的取值范围.分析:本题中,绝大多数同学不难得到:APPB=BAxx,但从此后却一筹莫展,问题的根源在于对题目的整体把握不够.事实上,所谓求取值范围,不外乎两条路:其一是构造所求变量关于某个(或某几个)参数的函数关系式(或方程),这只需利用对应的思想实施;其二则是构造关于所求量的一个不等关系.分析 1:从第一条想法入手,APPB=BAxx已经是一个关系式,但由于有两个变量BAxx,,同时这两个变量的范围不好控制,所以自然想到利用第 3 个变量直线AB的斜率k.问题就转化为如何将BAxx,转化为关于k的表达式,到此为止,将直线方程代入椭圆方程,消去 y 得出关于x的一元二次方程,其求根公式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 压轴 题解 技巧 方法 修订版
限制150内