最优化方法及应用(共8页).doc
《最优化方法及应用(共8页).doc》由会员分享,可在线阅读,更多相关《最优化方法及应用(共8页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上研究生课程(论文类)试卷2 0 1 4 /2 0 1 5 学年第 一 学期课程名称: 课程代码: 论文题目: 学生姓名: 专业学号: 学院: 课程(论文)成绩:课程(论文)评分依据(必填):任课教师签字: 日期: 年 月 日专心-专注-专业课程(论文)题目:简述最优化方法及应用内容:摘要:最优化方法作为研究各种系统的优化途径及方案,为决策者提供科学决策的依据。该文简单叙述了最优化方法及其处理问题的步骤和在各领域的应用,并详细介绍了最优化方法中的一种遗传算法,论述了遗传算法的基本原理和特点,为了特别说明其特点还进行了举例说明。关键词:最优化方法;遗传算法在生产过程、科学
2、实验以及日常生活中,人们总希望用最少的人力、物力、财力和时间去办更多的事,获得最大的效益,在管理学中被看作是生产者的利润最大化和消费者的效用最大化,如果从数学的角度来看就被看作是“最优化问题”。在最优化的研究生教学中我们所说的最优化问题一般是在某些特定的“约束条件”下寻找某个“目标函数”的最大(或最小)值,其解法称为最优化方法。最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方
3、案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。本章将介绍最优化方法的研究对象、特点,以及最优化方法模型的建立和模型的分析、求解、应用。主要是线性规划问题的模型、求解(线性规划问题的单纯形解法)及其应用运输问题;以及动态规划的模型、求解、应用资源分配问题。简单点,从数学意义上说从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最
4、大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。反之,某些最优化方法可适用于不同类型的模型。最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接
5、法。直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。此时可采用直接搜索的方法经过若干次迭代搜索到最优点。这种方法常常根据经验或通过试验得到所需结果。对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。数值计算法:这种方法也是一种直接法。它以梯度法为基础,所以是一种解析与数值计算相结合的方法。其他方法:如网络最优化方法等。一、最优化方法的发展简史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为1.618,称为黄金分割比。其倒数至今在优选法中仍得到广泛应用。在微积分出现以前,已有许多学者开
6、始研究用数学方法解决最优化问题。例如阿基米德证明:给定周长,圆所包围的面积为最大。这就是欧洲古代城堡几乎都建成圆形的原因。但是最优化方法真正形成为科学方法则在17世纪以后。17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。以后又进一步讨论具有未知函数的函数极值,从而形成变分法。这一时期的最优化方法可以称为古典最优化方法。第二次世界大战前后,由于军事上的需要和科学技术和生产的迅速发展,许多实际的最优化问题已经无法用古典方法来解决,这就促进了近代最优化方法的产生。近代最优化方法的形成和发展过程中最重要的事件有: 以苏联.康托罗维奇和
7、美国G.B.丹齐克为代表的线性规划;以美国库恩和塔克尔为代表的非线性规划;以美国R.贝尔曼为代表的动态规划;以苏联.庞特里亚金为代表的极大值原理等。这些方法后来都形成体系,成为近代很活跃的学科,对促进运筹学、管理科学、控制论和系统工程等学科的发展起了重要作用。在第二次世界大战以前, 处理最优化问题的数学方法主要是古典的微分法和变分法。二次大战中, 由于生产与军事上的需要,提出了大量不能用上述古典方法解决的问题, 从而产生了“ 运筹学” , 它包括如线性规划、非线性规划、动态规划等最优化方法。此后, 最优化方法不断得到丰富和发展。特别从六十年代以来, 由于近代科学技术和生产发展的需要, 以及电子
8、计算技术的飞速发展, 使最优化方法进入了一个蓬勃发展的新时期, 不仅方法如雨后春笋般涌现, 而且应用也日益广泛, 成为近代应用数学的一个重要分支。随着炼油及化工生产的大型化和复杂化, 使得一个决策的好坏, 往往会带来重大的经济后果。因此必须事先进行周密的分析和计算,力求得到最优的方案。大型快速电子计算机的出现,使一些过去只能定性地或粗略地分析比较的问题,如今已能借助电子计算技术寻求其最优解了。因此最优化方法在炼油和化工中的应用前途十分宽广。它不仅在生产过程的研究开发、规划设计、投资建设和操作控制中,而且在生产企业的计划安排、产品分配、物资调运和经济分析中都可以发挥一定的作用。可以预料, 在我国
9、向四个现代化进军的新长征中, 它将会发挥更大的作用。二、用最优化解决问题的工作步骤用最优化方法解决实际问题,一般可经过下列步骤:提出最优化问题,收集有关数据和资料;建立最优化问题的数学模型,确定变量,列出目标函数和约束条件;分析模型,选择合适的最优化方法;求解,一般通过编制程序,用计算机求最优解;最优解的检验和实施。上述 5个步骤中的工作相互支持和相互制约,在实践中常常是反复交叉进行。2.1 目标函数与约束条件凡是最优化问题, 都有要达到“最优”的目标, 把它写成数学形式称为目标函数,这里以J来表示, 它是n个独立变量ui(i=1,2、n) 的函数, 简记为J=f(u) (2-1-1)其中,u
10、=(u1,u2,、un)T (2-1-2)即u为n维列向量。当u的各分量ui( i=1,2,、 n )为一组特定的数值时, 称为一个“决策”( 因场合的不同也称为设计或控制)。实际上有些决策在技术上是不现实的或明显地不合理的,甚至是违反安全而不允许的。因此变量u的取值范围通常都有一个限制,这种限制称为约束条件。当以不等式表示时,称为不等式约束;当以等式表示时,称为等式约束。满足约束条件的点的全体集合,构成了该问题的可行域,记为R。R中的任意点,虽然不一定是最优解,但至少是可行的。当然,最优解应是可行解,如果它存在的话,必在可行域内。若R包括其边界上的所有点,称R 为闭域;若R的边界有一部分不属
11、于它,称R为开域。三、最优化方法的应用最优化一般可以分为最优设计、最优计划、最优管理和最优控制等等四个方面。最优设计:世界各国工程技术界,尤其是飞机、造船、机械、建筑等部门都已广泛应用最优化方法于设计中,从各种设计参数的优选到最佳结构形状的选取等,结合有限元方法已使许多设计优化问题得到解决。一个新的发展动向是最优设计和计算机辅助设计相结合。电子线路的最优设计是另一个应用最优化方法的重要领域。配方配比的优选方面在化工、橡胶、塑料等工业部门都得到成功的应用,并向计算机辅助搜索最佳配方、配比方向发展(见优选法)。最优计划:现代国民经济或部门经济的计划,直至企业的发展规划和年度生产计划,尤其是农业规划
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化 方法 应用
限制150内