2023年材料本构关系(完整文档).docx
《2023年材料本构关系(完整文档).docx》由会员分享,可在线阅读,更多相关《2023年材料本构关系(完整文档).docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年材料本构关系(完整文档)下面是我为大家整理的材料本构关系(完整文档),供大家参考。材料本构关系 第十七章材料本构关系 基本要求:1掌握连续、 均质、 各向同性固体金属的塑性本构关系;2了解金属粉末体和粘性材料的本构关系的特点。第一节 弹性应力应变关系 单向应力状态下线弹性阶段的应力应变关系服从虎克定律。将其推广到一般应力状态下的各向同性材料, 就是广义虎克定律, 即式中, E 是弹性模量(MPa); ν是泊松比; G 是剪切模量(MPa)。三个弹性常数 E、 ν、 G 之间有如下关系将式(17-1 )的 εx、 εy、 εz
2、 相加整理后得即上式表明, 弹性变形时其单位体积变化率(θ =εx+εy+εz= 3εm)与平均应力σm 成正比, 说明应力球张量使物体产生了 弹性体积改变。将式(17-1)ε x、 ε y、 ε z 分别减去 ε m, 如同理得 z, 因此应变偏量与应力偏量之间的关系, 可写成如下形式简记为上式表示应变偏张量与应力偏张量成正比, 表明物体形状的改变只是由应力偏张量引起的。由式(17-2)和式(17-3), 广义虎克定律可写成张量形式广义虎克定
3、律还可以写成比例及差比的形式 及上式表明, 应变莫尔圆与应力莫尔圆几何相似, 且成正比。由以上分析可知, 弹性应力应变关系有如下特点:1)应力与应变成线性关系。2)弹性变形是可逆的, 应力应变关系是单值对应的。3)弹性变形时, 应力球张量使物体产生体积变化, 泊松比 ν lt; 5. 0 。4)应力主轴与应变主轴重合。第二节 塑性应力应变关系 当质点应力超过屈服极限进入塑性状态时, 应力 应变关系一般不能一一对应, 而是与加载路线有关。由于加载路线不同, 同一种应力状态可以对应不同的 应变状态, 同一应变状态, 也可以对应不同的应力状 态, 而且应力与应变主轴不一定重合。根据以上的分析,
4、 塑性应力与应变关系有如下特 点: 1)应力与应变之间的关系是非线性的。2)塑性变形是不可逆的, 应力应变关系不是单值对应的, 与应变历史有关。3)塑性变形时可认为体积不变, 即应变球张量为零, 泊松比 ν = 5. 0 。4)全量应变主轴与应力主轴不一定重合。由于塑性应力应变关系与加载路线或加载的历史有关。因此, 离开加载路线来建立应力与全量塑性应变之间的普遍关系是不可能的, 一般只能建立应力与应变增量之间的关系,仅在简单加载下, 才可以建立全量关系。所谓简单加载, 是指在加载过程中各应力分量按同一比例增加, 应力主轴方向固定不变。如图 17-2b 中, 由原点 O 到 F 点的直线所
5、表示的就是简单加载。第三节 增量理论 增量理论又称流动理论, 是描述材料处于塑性状态时, 应力与应变增量或应变速率之间关系的理论, 它是针对加载过程的每一瞬间的应力状态所确定的该瞬间的应变增量, 这样就撇开加载历史的影响。列维-密塞斯(Levy-Mises)理论 Levy 和 Mises 分别于 1871 和 1913 年建立了理想塑性材料的流动理论, 该理论建立在下面四个假设基础上。1)材料是理想刚塑性材料, 即弹性应变增量 dεij 为零。塑性应变增量 dεij 就是总应变增量 dε ij。2)材料符合 Mises 屈服准则, 即 &sigm
6、a; =σ s。3)每一加载瞬时, 应力主轴与应变增量主轴重合。4)塑性变形时体积不变, 即 d ε1 + d ε2 ep+ d ε3 = d εx+ d εy+ d εz= 0 所以塑性应变增量偏张量就是应变增量张量, 即 d εij= d εij′在上述假设前提下, 得到应变增量和应力偏量成正比的结论, 即式中, d λ是瞬时的非负比例系数, 在加载的不同瞬间是变化的, 在卸载时 d λ = 0 。式(17-6
7、)称为 Levy-Mises 方程。由于 d εij= d εij′,所以式(17-6)与广义虎克定律式(17-4)形式上相似, 也可以写成比例形式和差比形式: 经推导得出将式(17-10)代入式(17-7), Levy-Mises 方程还可以写成广义表达式由式(17-11)和式(17-6)可以证明平面变形和轴对称问题的一些结论。1)平面塑性变形时, 设 z 向没有变形, 则有 dεz= 0 , 由式(17-11), 则得2)若两个正应变增量相等, 其对应的应力也相等。例如在某些轴对称问题中,由式(17-6)有因此 Levy-Mise
8、s 方程仅适用于理想刚塑性材料, 它只给出了应变增量与应力偏量之间的关系。由于 d εm= 0 , 因而不能确定应力球张量。因此, 如果已知应变增量, 只能求得应力偏量分量, 一般不能求出应力。另一方面, 如果已知应力分量, 因为为常数, 是不定值, 也只能求得应变增量各分量之间的比值, 而不能直接求出它们的数值。应力-应变速率方程 将式(17-6)两边除以时间 d t, 可得式中为应变速率张量, 为等效应变速率。则有式(17-12)称为应力-应变速率方程, 它同样可以写成比例形式和广义表达式。式(17-12)由圣文南(B.Saint-Venant)于 1870 年提出, 由于
9、与牛顿粘性流体公式相似, 故又称为圣维南塑性流体方程。如果不考虑应变速率对材料性能的影响, 该式与列维-密塞斯方程是一致的。普朗特-劳斯(Prandtl-Reuss)理论 Prandtl-Reuss 理论是在 Levy-Mises 理论基础上进一步考虑弹性变形部分而发展起来的。即总应变增量的分量由弹、 塑性两部分组成, 即式中, 塑性应变增量由 Mises 理论确定, 弹性应变增量由式(17-5)微分可得所以 Prandtl-Reuss 方程式(17-14)也可写成第四节 全量理论 在小变形的简单加载过程中应力主轴保持不变, 由于各瞬时应变增量主轴和应力主轴重合, 所以应变主轴也将保持不变。在
10、这种情况下, 对应变增量积分便可得到全量应变。在这种情况下建立塑性变形的全量应变与应力之间的关系称为全量理论, 亦称为形变理论。全量理论最早是由汉基(H.Hencky)于 1924 年提出。如果假定是刚塑性材料, 而且不考虑弹性变形, 则可用全量应变 ε ij 代替 Mises 方程中的应变增量, 即式中, 上式也可以写成比例形式和差比形式, 进一步写成广义表达式。如果是弹塑性材料的小变形, 则同时要考虑弹性变形。此时, Hencky 方程为式(17-17)中第一式表示形状变形:前一项是塑性应变; 后一项是弹性应变。第二式表示弹性体积变形。为了便于与广义虎克定律式(17-4)进
11、行比较, 令 G′为塑性切变模量, 使得′ 于是式(17-17)第一式可写成这样便与广义虎克定律式(17-4)在形式上是一样的, 区别仅在于 G 是材料常数, 而G′是随变形过程而变的。且所以, 可以把小变形全量理论看成是广义虎克定律在小塑性变形中的推广。第五、 六、 七节自学d1ZOCqe3!P Drg4$QF th5%SGui7*THvk8(UIxl9) WK yma+XLzoc0YM Bpd1#OCqe3! PDsg4$QFth5%S Gui7* THvk8(U Jxl9) WKymb+XLzoc0YNBpd1# OCqe3!PDsg4$ QFth5a
12、mp;SGui7*THwk8(UJxl9- WKymb+XLzoc0 YNBpd1#OCqf3!PDsg4$RFth5 amp;SGui7*THwk8 (UJxl9-WKymb+XLAoc0YNBpd 2#OCq f3! PDsg 4$RFth5amp;SGuj7*THwk8(VJxl 9-WKy nb+XLAo c0YNBpd2#OCqf3!PEsg4$RFt h6amp;SG uj7*TIw k8(VJxl9-WK y nb+XLAoc0ZNB pd2#O Crf3!PE sg4$RFth6amp;SG uj7*TIwk8(VJ xla-W Kynb+XM Aoc0ZNBpd2# O Cr
13、f3! PEsg4%R Fth6amp; SGvj7*T Iwk8) VJxla-WKynb+XMAoc0Z NBpe2# OCrf3! QEsg4%RFth6amp;SGvj7*TIwk8) VJxla -WKznb+ XMAoc1 ZNBpe2#OCrf3! QEsg 4%RFti6amp;SGvj 7*UIwk8) VJxm a -WKznb+XMAo c1ZNBpe2#ODr f3!QEsg5%RFt i6amp;SHvj7*UIw k8) VJxm a-WKz nb+YMAoc1ZNBqe2#ODrf3!QE sg5%RFti6amp;SH vj7*UIwk9) VJxma-WLzn
14、b+YM Aoc1ZNB qe2#O Drf3$QEsg5%RFui6amp;SHvj7(U Iwk9) VJ xma-W Lznb+YMAod1ZNBqe2#PDrf3$ QEsh5% RFui6amp; SHvj7(UIwk9) VJyma-WLznb0 YMAod1ZNBqe2 #PDrf3$QEsh5%RFui6amp;THvj7 (UIwl9) VJyma -WLznb0YMAod1ZNAoc0YNBpd 2#OCqf 3!PEsg 4$RFth6amp;SGuj7*TIwk8(VJxl 9-WKynb+XLAo c0ZNBpd2#OCrf3!PEsg4$RFt h6amp;SGu
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 材料 关系 完整 文档
限制150内