正弦函数诱导公式教案(2).docx
《正弦函数诱导公式教案(2).docx》由会员分享,可在线阅读,更多相关《正弦函数诱导公式教案(2).docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正弦函数诱导公式教案(2)余弦函数诱导公式教案(2)4正弦函数和余弦函数的定义域诱导公式-余弦函数一、教学目标:1、学问与技能(1)了解随意角的余弦函数概念;(2)理解余弦函数的几何意义;(3)驾驭余弦函数的诱导公式;(4)能利用五点作图法作出余弦函数在0,2上的图像;(5)娴熟依据余弦函数的图像推导出余弦函数的性质;(6)能区分正、余弦函数之间的关系;(7)驾驭利用数形结合思想分析问题、解决问题的技能。2、过程与方法类比正弦函数的概念,引入余弦函数的概念;在正、余弦函数定义的基础上,将三角函数定义推广到更加一般的状况;让学生通过类比,联系正弦函数的诱导公式,自主探究出余弦函数的诱导公式;能学
2、以致用,尝试用五点作图法作出余弦函数的图像,并能结合图像分析得到余弦函数的性质。3、情感看法与价值观使同学们对余弦函数的概念有更深的体会;会用联系的观点看问题,建立数形结合的思想,激发学习的学习主动性;培育学生分析问题、解决问题的实力;让学生体验自身探究胜利的喜悦感,培育学生的自信念;使学生相识到转化“冲突”是解决问题的有效途经;培育学生形成实事求是的科学看法和锲而不舍的钻研精神。二、教学重、难点重点:余弦函数的概念和诱导公式,以及余弦函数的性质。难点:余弦函数的诱导公式运用和性质应用。三、学法与教学用具我们已经知道正弦函数的概念是通过在单位圆中,以函数定义的形式给出来的,从而把锐角的正弦函数
3、推广到随意角的状况;现在我们就应当与正弦函数的概念作比较,得出余弦函数的概念;同样地,可以仿照正弦函数的诱导公式推出余弦函数的诱导公式。用五点作图的方法作出ycosx在0,2上的图像,并由图像直观得到其性质。教学用具:投影机、三角板第一课时余弦函数的概念和诱导公式一、教学思路【创设情境,揭示课题】在初中,我们不但学习了正弦函数,也学习了余弦函数,sin。同样地,当我们把角放在平面直角坐标系中以后,就可以得到余弦函数的定义。下面请同学们类比正弦函数的定义,自主学习课本P30P31.【探究新知】1余弦函数的定义在直角坐标系中,设随意角与单位圆交于点P(a,b),那么点P的横坐标a叫做角余弦函数,记
4、作:acos(R).通常我们用x,y分别表示自变量与因变量,将余弦函数表示为ycosx(xR).如图,有向线段OM称为角的余弦线。其实,由相像三角形的学问,我们知道,只要已知角的终边上随意一点P的坐标(a,b),求出|OP|,记为r,则角的正弦和余弦分别为:sin,cos.在今后的解题中,我们可以干脆运用这种方法,简化运算过程。2余弦函数的诱导公式从右图不难看出,角和角2,2,()的终边与单位圆的交点的横坐标是相同的,所以,它们的余弦函数值相等;角和角,的终边与单位圆的交点的横坐标是相反数,所以,它们的余弦函数值互为相反数。由此归纳出公式:cos(2)coscos()coscos(2)cosc
5、os()coscos()cos请同学们视察右图,角与角的正弦、余弦函数值有什么关系?由图可知,RtOMPRtOMP,点P的横坐标cos与点P的纵坐标sin()相等;点P的纵坐标sin与点P的横坐标cos()互为相反数。我们可以得到:sin()coscos()sin问题与思索:验证公式sin()coscos()sin以上公式统称为诱导公式,其中可以是随意角。利用诱导公式,可以将随意角的正、余弦函数问题转化为锐角的正、余弦函数问题。【巩固深化,发展思维】1例题讲评例1已知角的终边经过点P(2,4)(如图),求角的余弦函数值。解:x2,y4,r|OP|2cos例2假如将例1中点P的坐标改为(2t,4
6、t)(t0),那么怎样求角的余弦函数值。解:(提示:在r|OP|2|t|中,分t0和t0两种状况,见教材P31)例3求值:(1)cos(2)cos(3)cos()(4)cos(1650)(5)cos(15015)解:(1)coscos(2)cos(2)coscos()cos0.9239(3)、(4)、(5)略,见教材P33例4化简:解:(略)2学生练习二、归纳整理,整体相识(1)请学生回顾本节课所学过的学问内容有哪些?所涉及的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?三、课后反思4正弦函数和余弦函数的
7、定义与诱导公式导学案 4正弦函数和余弦函数的定义与诱导公式导学案班级:_小组:_姓名:_学习目标:一、【目标】1.借助单位圆相识和理解正弦函数、余弦函数的概念。2.会利用单位圆探讨正弦函数、余弦函数的周期性。3.知道诱导公式的推导过程;能概括诱导公式的特点。4.能敏捷运用诱导公式娴熟正确地进行求值、化简及变形。5.提高对三角函数中单位圆思想的相识,培育借助图形直观进行视察、感知探究、发觉及逻辑推理的实力,渗透驾驭分类探讨及数形结合的思想方二、【学习重点、难点】重点:正弦函数、余弦函数的单位圆定义法;用联系的观点,发觉并证明诱导公式。难点:正弦函数、余弦函数的定义理解;如何引导学生从单位圆的对称
8、性与随意角终边上点的对称性,发觉问题,提出探讨方法。教学安排:第一课时: 一、复习1、在RtABC中,C90,分别写出A的三角函数关系式:sinA_,cosA=_,sinB_,cosB=_,比较上述中,sinA与cosB,cosA与sinB的表达式,你有什么发觉?2.周期函数:3.同角三角函数关系:二预习1.在直角坐标中,以_为圆心,以_为半径的圆叫做单位圆。2.正弦函数、余弦函数定义:一般地,在直角坐标系中,对随意角(弧度制),使角的顶点与原点重合,始边与x轴正半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v,叫作角的正弦函数,记作v。点P的纵坐标u,叫作角的余弦函数,记作u.通
9、常,我们用x,y分别表示自变量与因变量,将正、余弦函数分别表示为ysinx,ycosx.定义域:_,值域:_.3、在直角坐标系中,设是一个随意角,它的终边上随意一点P(x,y),那么:正弦=_,余弦=_。4.当角的终边分别在第一、二、三、四象限时,正弦函数值、余弦函数值的正负号:象限三角函数第一象限其次象限第三象限第四象限5.周期性:终边相同的角的正弦函数值相等,即sin(2k)sin(kZ),说明对于随意一个角,每增加2的整数倍,其正弦函数值不变。所以,正弦函数是随角的改变而周期性改变的,正弦函数是周期函数,2k(kZ,k0)为正弦函数的周期。2是正弦函数的正周期中最小的一个,称为_。一般地
10、,对于周期函数f(x),假如它全部的周期中存在一个最小的正数,那么这个最小的正数就叫作f(x)的_。(余弦函数ycosx同上).三、合作探究例1:将各特别角的三角函数值填入下表。x0y=sinxy=cosx 例2已知角的终边经过点P(2,4),求角的正弦函数值、余弦函数值。 四、自我训练1.已知角的终边经过点P(-2,-3),求角的正弦、余弦值.2.确定下列各三角函值的符号:cos250;sin(-/4);sin(-672);cos3; 3.已知sin0且cos0,确定角的象限. 其次课时: 一,问题的提出求下列三角函数的值,公式一都能解决吗?是否有必要探讨新的公式?sin1110=二,自主学
11、习(一)学问梳理:则公式一的作用:4.(1)的终边与角终边关于_对称(2)的终边与角终边关于_对称(3)的终边与角终边关于_对称(4)的终边与角终边关于_对称5.如图,设为一随意角,的终边与单位圆的交点为P(x,y),角的终边与单位圆的交点为P0,点P0与点P关于_成中心对称,因此点P0的坐标是_于是,我们有: 公式二:_ 类比公式二的得来,得:公式三:_ 类比公式二,三的得来,得:公式四:_对公式一,二,三,四用语言可概括为:上述公式的作用:将分别加上,三角函数值(会否)变更?是否可以得出,形如的角,求三角函数值的一般方法或口诀? (二)合作探究1、利用公式求下列三角函数值(1)cos210
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 函数 诱导 公式 教案
限制150内