高一年级数学知识点总结.docx
《高一年级数学知识点总结.docx》由会员分享,可在线阅读,更多相关《高一年级数学知识点总结.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一年级数学知识点总结高一网权威发布高一年级数学重要学问点总结,更多高一年级数学重要学问点总结相关信息请访问高一网。学习是一个坚持不懈的过程,走走停停便难有成就。比如烧开水,在烧到80度是停下来,等水冷了又烧,没烧开又停,如此周而复始,又费精力又费电,很难喝到水。学习也是一样,学任何一门功课,都不能只有三分钟热度,而要一鼓作气,每天坚持,久而久之,不论是状元还是伊人,都会向你招手。大范文网高一频道为正在努力学习的你整理了高一年级数学重要学问点总结,希望对你有帮助!一丶函数的有关概念1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯
2、一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域.留意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1.(5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不行以等于
3、零,(7)实际问题中的函数的定义域还要保证明际问题有意义.u相同函数的推断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一样(两点必需同时具备)2.值域:先考虑其定义域(1)视察法(2)配方法(3)代换法3.函数图象学问归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸
4、缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区分,映射是一种特别的对应,而函数又是一种特别的映射.2、对于函数的概念,应留意如下几点:(1)驾驭构成函数的三要素,会推断两个函数是否为同一函数.(2)驾驭三种表示法列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特殊是会求分段函数的解析式.(3)假如y=f(u),u=g(x),那么y=fg(x)叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1
5、)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.留意:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.熟识的应用,求f-1(x0)的值,合理利用这个结论,可以避开求反函数的过程,从而简化运算.(二)、函数的解析式与定义域1、函数及其定义域是不行分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必需是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一年级 数学 知识点 总结
限制150内