正方形综合试题选(共20页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《正方形综合试题选(共20页).doc》由会员分享,可在线阅读,更多相关《正方形综合试题选(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 正 方 形 综 合 试 题 选1如图,直线MN经过正方形ABCD的一个顶点A,过点B作BEMN于点E,过点C作CFMN于点F,当直线MN经过点D(如图1)时,易证:AF+CF=2BE当直线MN不经过点D时,线段AF、CF、BE又有怎样的数量关系?请直接写出你的猜想,并选择图(2)、图(3)中的一种情况给予证明2已知四边形ABCD中,AB=BC,ABC=120,MBN=60,MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F当MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当MBN绕B点旋转到AECF时,在图2和图3这两种情况下,上述
2、结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明3(本溪二模)已知直线l经过正方形ABCD的顶点A,过点C作CE直线l于点E,连接BE(1)如图1,当直线lBC时,CE+AE= BE;(2)如图2,当直线l绕着点A,逆时针旋转到如图位置时,请判断线段BE、AE、CE三者数量关系,并证明;(3)如图3,当直线l绕着点A,逆时针旋转到如图位置时,请补全图形并判断线段BE、AE、CE三者数量关系,不必证明4(天桥区一模)如图1,正方形OABC与正方形ODEF放置在直线l上,连结AD、CF,此时AD=CFADCF成立(1)正方形ODEF绕O点
3、逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?若成立,请证明;若不成立,请说明理由(2)正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,求证:ADCF(3)在(2)小题的条件下,AD与OC的交点为G,当AO=3,OD= 时,求线段CF的长5如图,四边形ABCD是正方形,点G是直线BC上的任意一点,DEAG于点E,BFDE,交AG于F(1)当点G在线段BC上时,如图1,求证:DE-BF=EF;(2)当点G在线段CB的延长线上时,如图2,判断线段DE、BF、EF之间的数量关系是; (3)在(2)的条件下,连接AC,过F作FPGC,交AC于点P,连接DP,若ADE=30,GB
4、= ,求DP的长6(黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OEMN于点E,过点B作BFMN于点F(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明7(盐城)如图所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向ABC外作正方形CADF和正方形CBEG,过点D作DD1l于点D1,过点E作EE1l于点E1(1)如图,当点E恰好在直线l上时(
5、此时E1与E重合),试说明DD1=AB;(2)在图中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系(不需要证明)8(黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AEEF,BE=2(1)求EC:CF的值;(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由9(青海)如图(*
6、),四边形ABCD是正方形,点E是边BC的中点,AEF=90,且EF交正方形外角平分线CF于点F请你认真阅读下面关于这个图的探究片段,完成所提出的问题(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但ABE和ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证AEMEFC就行了,随即小强写出了如下的证明过程:证明:如图1,取AB的中点M,连接EMAEF=90FEC+AEB=90又EAM+AEB=90EAM=FEC点E,M分别为正方形的边BC和AB的中点AM=EC又可知BM
7、E是等腰直角三角形AME=135又CF是正方形外角的平分线ECF=135AEMEFC(ASA)AE=EF(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由10(锦州)已知:在ABC中,BAC=90,AB=AC,点D为直线BC上一动点(点D不与B、C重合)以AD为边作正方形ADEF,连接CF
8、(1)如图1,当点D在线段BC上时,求证:BDCFCF=BC-CD(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:请直接写出CF、BC、CD三条线段之间的关系若连接正方形对角线AE、DF,交点为O,连接OC,探究AOC的形状,并说明理由(4)在(3)的条件下,AD与AB满足什么条件时?AOC是等边三角形.11(黑龙江)在ABC中,BAC=90,AB=AC,若点D在线段BC上,以AD为边长作正方形ADEF,如图1,易证:AFC=ACB+DAC;(1
9、)若点D在BC延长线上,其他条件不变,写出AFC、ACB、DAC的关系,并结合图2给出证明;(2)若点D在CB延长线上,其他条件不变,直接写出AFC、ACB、DAC的关系式12(东营)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE=45,请你利用(1)的结论证明:GE=BE+GD(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B=90,AB=BC,E是AB上一点,且DCE=45,BE=4,DE=10,求
10、直角梯形ABCD的面积13(永州)探究问题:(1)方法感悟:如图,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足EAF=45,连接EF,求证DE+BF=EF感悟解题方法,并完成下列填空:将ADE绕点A顺时针旋转90得到ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,1=2,ABG=D=90,ABG+ABF=90+90=180,因此,点G,B,F在同一条直线上EAF=452+3=BAD-EAF=90-45=451=2,1+3=45即GAF= 又AG=AE,AF=AFGAF =EF,故DE+BF=EF(2)方法迁移:如图,将RtABC沿斜边翻折得到ADC,点E,F分别
11、为DC,BC边上的点,且EAF= DAB试猜想DE,BF,EF之间有何数量关系,并证明你的猜想(3)问题拓展:如图,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足EAF= DAB,试猜想当B与D满足什么关系时,可使得DE+BF=EF请直接写出你的猜想(不必说明理由)14(营口)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是
12、否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)15(咸宁)(1)如图,在正方形ABCD中,AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求EAF的度数(2)如图,在RtABD中,BAD=90,AB=AD,点M,N是BD边上的任意两点,且MAN=45,将ABM绕点A逆时针旋转90至ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由(3)在图中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM
13、=3 ,求AG,MN的长16(阜新)如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PB=PE,连接PD,O为AC中点(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;(2)如图2,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;(3)如图3,当点P在AC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由17(赤峰)如图(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,AEF=90,且EF交正方形外角平分线CP
14、于点F,交BC的延长线于点N,FNBC(1)若点E是BC的中点(如图1),AE与EF相等吗?(2)点E在BC间运动时(如图2),设BE=x,ECF的面积为y求y与x的函数关系式;当x取何值时,y有最大值,并求出这个最大值18(天水)在正方形ABCD中,点P是CD边上一动点,连接PA,分别过点B、D作BEPA、DFPA,垂足分别为E、F,如图(1)请探究BE、DF、EF这三条线段的长度具有怎样的数量关系?若点P在DC的延长线上,如图,那么这三条线段的长度之间又具有怎样的数量关系?若点P在CD的延长线上呢,如图,请分别直接写出结论;(2)就(1)中的三个结论选择一个加以证明19(义乌市)如图1,四
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正方形 综合 试题 20
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内