2023年【三角形三边的关系教案】三角形三边关系优质课教案.docx
《2023年【三角形三边的关系教案】三角形三边关系优质课教案.docx》由会员分享,可在线阅读,更多相关《2023年【三角形三边的关系教案】三角形三边关系优质课教案.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年【三角形三边的关系教案】三角形三边关系优质课教案 “三角形三边的关系”教案 福建省上杭试验小学 吴秋菊 教学内容:人教版义务教化课程标准试验教科书数学四年级下册第82页。 教学目标: 1、让学生通过揣测、操作、探究、感悟三角形三边关系的思维方法。 2、驾驭三角形三边关系的意义,并能运用说明生活中的数学现象。 3、培育学生视察、操作、合作、表达、抽象、概括、类比、解决问题的实力,发展空间观念。 教学重点:驾驭“三角形随意两边的和大于第三边”的性质及其敏捷应用。 教学难点:探究并发觉“三角形随意两边的和大于第三边”的性质的过程。 教学打算:多媒体课件、纸条、试验记录表。 教学过程: 一、
2、创设情境,悬念导入 师:平常,同学们上学,老师上班、父母外出几乎都会遇到像图中的小明上学那样的问题,(媒体呈现小明上学路途图),小明上学有几条路,可以怎么走? 生:有三条路,可以小明家到邮局再到学校;也可以沿中间直走;还可以先到商店再到学校。 师:让我们把掌声送给这么英勇,表达又那么清晰流利的同学!走哪条路最近,为什么? 生:沿中间这条路直走最近,依据两点之间的距离最短。 师:这位同学能巧用“两点之间的距离最短”的数学学问来说明生活问题,这很重要! 师:你们再看,小明走的三条路途恰巧围成了两个三角形(媒体呈现),还可以试着用三角形三边关系来说明这个问题,那三角形三边之间究竟有怎样的关系呢?大家
3、不妨猜猜看! 生揣测:两边的和大于第三边 师:胜利从揣测起先,今日,就让我们带着新奇一起走进探究和发觉“三角形三边的关系”的旅程,信任一向勤学善思乐学巧学的同学们肯定能很快揭晓其中的奇妙! (板书课题)。 【评析:吴老师创设学生“真实”“再熟识不过的生活情境”小明上学路途图,一下子触及了学生“认知层面”的生活情结,进而向“数学层面”同化顺应过程。】 二、操作探究,验证发觉 (一)动手试验 师:光有揣测还不够,很多重大发觉都来自于动手试验,我们也来动手试验,首先请听清试验要求(媒体展示): 1请同学们拿出信封里的4根纸条和试验记录单,请你随意选3根围一围,看能否围成三角形。 2同桌合作完成,一人
4、操作,一人帮助并做好记录。 3至少做3组试验。 师:听清试验要求了吗?好!那咱们就来比比哪桌的两位同学协作的好,完成得快! 学生试验,老师巡察,个别指导并选派一组上台操作试验。 (二)汇报整理 1学生汇报:我们就请台上操作试验的同学来汇报,看谁最仔细倾听! 2老师整理:现在老师把同学们试验的状况大致整理了一下(媒体展示)三角形三边关系试验记录表。 大家试验结果是这样吗?(是) 【评析:说千遍不如动手操作一遍,吴老师一句“很多重大发觉都来自于动于手试验,我们也来动手试验”激发了学生想当一回数学家的愿望,剧烈的探究欲和试验热忱摧开了学生思维的闸门,很快学生有话说,精彩源于“亲历”,学生初识庐山真面
5、目“两边的和小于或等于第三边时围不成三角形”。】 (三)深化探究 (1)反面例证 师:假设三根纸条分别是三角形的三条边。我们用反面例证法先选取前两组来探讨,为什么前两组试验的三条边不能围成三角形呢?请小组探讨一下,再来发表见解。 生1:前两组中的短的两条边太短了,长的边太长了,所以围不成三角形。(引导 学生看图说完整话) 生2:第1组的上面两条短的边加起来的和比下面的长边更短一些。 生3:第2组中的上面两条短的边连起来和长边一样长,变成两条平行线一样, 所以不能围成三角形。 (2)恰当表达 师:(媒体验证)同学们说的两条边连起来,可不行以说成“两边的和”(可以),而“比下面的长边更短一些”“和
6、长边一样长”可否用“小于或等于”第三边,用简洁的数学语言来说就是“两边的和小于或等于第三边都围不成三角形。” (3)猜想揭示 1猜想 师:实践出真知。同学们那么快就发觉并解除了“两边的和小于或等于第三边围不成三角形”的两种状况,确定吗?(确定)哦也!(幽默一下)(媒体验证)我们何不快马扬鞭乘胜追击大胆再揣测一下,两边的和与第三边存在怎样的关系时能围成三角形? 生:两边的和大于第三边能围成三角形。 师:这是真的真的真的吗?(幽默一下)这句不改了。(师板书) 生:生异口同声真的不改了。(媒体验证) 2冲突: 6师:似乎千真万确哟!那你们说这三边能围成三角形吗?(媒体展示), 生1:能.因为512&
7、gt;6、612>5,两边的和大于第三边能围成三角形。 生2:不能,因为56 师:对呀,围不成呀,这不是咱们刚才已阅历证过了的吗?(猴急)所以这句话完整吗,那原委应当怎么说呢? 生1:应当最短的两边的和大于第三边。 生2:应当随意两条边的和大于第三边。 师:你们同意吗?(同意),是呀,虽然512>6,612>5,但56 生1:添上“较短”的两边的和,(为什么呀)因为最短的两边和都大于第三边, 别说更长的两边的和肯定大于第三边,所以确定能围成三角形。 生2:也可以说成“随意”两边的和。 师:什么叫“随意”? 生3:就是随意拿两条边加起来都比第三边长。 师:咱们一起来读读这句话!
8、 3验证 师:是吗?请同学们选择自己喜爱的一组来检验检验!能口算的尽量用口算。 师:5、6、7这组你是怎么快速推断的? 生4:56>7,所以这三条线段能围成三角形。 师:噢,用口算加法便知晓了,那只要加一次就可以了吗? 生4:不信,你就加加好了,56>7;57>6;67>5,依据三角形随意两边的 和大于第三边,可以推断确定能围成三角形, 师:同学们要这么麻烦吗?(师故作) 生4:当然不用了,再说了,只要最短的两边的和大于第三边就行了。 师:说得好!你叫什么名字?(多多)那我们就用多多法来推断吧! 看来这么好的方法要给它取个更洪亮的名字,最好叫它“一加一比灵”而不是“一贴
9、灵”(幽默)。其它组依次类推,同理可得,师媒体快速完善表格。 4揭示 师:大家再把目光聚焦到这些算式的符号,看看有什么相同点和不同点,说明白什么? 生:后两组用的三个都是大于号,可见的确随意两边的和都大于第三边,才能围成三角形; 生:而前两组虽然也有两个大于号,但只要有一个小于或等于便不能围成三角形。 可见“随意”两字非常关键,(边板书随意(或较短)全班再读这句话。 (四)看书质疑 1自学课本 这句话在书本第82页,请同学们用上自己平常喜爱的阅读方法再读读课本,看看还有什么疑问? 2辨析解读 大家读了课本之后,对这句话的理解更深刻了吗?说说看 生1:我更加深刻的理解了“只有随意两边的和都大于(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形三边的关系教案 2023 三角形 三边 关系 教案 优质课
限制150内