2023年人工智能在城市交通信号控制中的应用.docx
《2023年人工智能在城市交通信号控制中的应用.docx》由会员分享,可在线阅读,更多相关《2023年人工智能在城市交通信号控制中的应用.docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年人工智能在城市交通信号控制中的应用 五邑大学智能交通读书报告 人工智能在城市交通信号控制中的应用 五邑大学信息工程学院 2023年4月 目录 摘要 Abstract 第一章绪论 1.1研究背景 1.2智能交通系统简介 1.3城市交通信号控制概述 1.4国内外城市交通信号控制的发展历程 1.5城市交通信号灯控制的发展方向 第二章 城市智能交通控制的基本理论 2.1模糊逻辑(Fuzzy Logic) 2.2人工神经网络(Artificial Neural Networks) 2.3遗传算法(Genetic Algorithm) 2.4蚁群算法(Ant Colony Optimizatio
2、n) 2.5粒子群算法(Particle Swarm Optimization) 2.6多智能体技术(Multi-agent) 第三章 多智能体技术介绍 3.1智能体(Agent) 3.2 Agent的结构 3.3 Agent的分类 3.4多智能体系统在交通控制领域的优越性 第四章 基于RBF神经网络的单交叉口自学习控制系统 4.1引言 4.2问题描述 4.3控制器的设计及其算法 4.3.1基于神经网络的单交叉口模型 4.3.2 RBF神经网络 4.3.3神经网络自学习方案 4.4仿真分析 第五章结论与展望 5.1 总结 5.2 展望 摘要 随着社会的进步,城市化进程加快,城市人口和车辆日益增
3、多,城市交通问题日益突出,严重影响城市发展。先进的城市交通信号控制系统能提高现有道路的通行能力,改善交通状况,达到疏导交通、保证交通安全、畅通,智能交通系统就是其中之一,智能交通系统的发展,城市交通信号控制己成为最重要的研究方向。由于城市交通的复杂性,采用传统的控制方法己无法有效地解决交通信号控制问题,本文研究人工智能控制的方法在城市交通信号控制中的应用。 关键词: 交通信号控制,人工智能,ITS,神经网络,模糊理论,相序优化 第一章 绪论 1.1研究背景 城市交通是城市经济活动的命脉,对城市经济的发展,人民生活水平的提高起着十分重要的作用。从1886年第一辆小汽车在德国问世,增加了人类在交通
4、领域的机动性,便捷性,同时促进了城市道路和高速公路的发展。随着汽车工业的迅速发展,汽车己经成为人们日常生活中必不可少的交通工具。现在,人类社会的科学技术和经济力己经发展到了相当高的水平,机动车辆迅速增加,有关资料表明:1978年至1995年全国城市机动车的保有量的增长速度是道路增长速度的80倍。从70年代末起,我国城市汽车拥有量以每年平均12%-14%的速度增长。1978年,我国民用汽车总量仅有135.84万辆,到2023年超过1845万辆,机动车总数达到6852万辆。其中,私人汽车由1985年的28.45万辆增加到770万辆,这些民用汽车特别是私人汽车,多集中在我国的城市地区,而且增长趋势迅
5、猛。 汽车工业虽然给人们带来各种便利,但是也给城市交通带来了沉重负担,城市道路交通供需的严重不平衡已经成为各大中城市所共同面对的严重问题,特别是在大城市,交通堵塞现象时有发生,这不仅影响城市的正常运转,而且明显降低了人们的日常工作效率。据统计,现在全国32个百万人口以上的城市中,有27个城市的人均道路面积低于全国平均水平。每年由交通堵塞造成的直接经济损失大约1600亿元;相当于国内生产总值的3.2%121.由此产生了一系列的问题,如环境污染、交通拥挤、交通事故频发等,给人们的生命和财产带来了很大的损失。 2023年,全国共发生交通事故70多万起,10万多人死亡,受伤人数50万人,直接经济损失达
6、30亿元。近五年,全国道路交通事故起数上升了32.5%,死亡人数上升了85%,受伤人数上升了42%。目前,机动车污染己经上升为我国城市大气和噪声的主要污染源。例如, 北京市汽车排放的一氧化碳、碳氢化合物、氮氧化物已占总排放的40%-75%。广州市与交通有关的排放占一氧化碳总排放的87%和二氧化氮的67%。据国际卫生组织1998年公布的调查报告,在全球空气污染最严重的10个城市中,我国就占了7个,包括太原、北京、乌鲁木齐、兰州、重庆、济南、石家庄. 为了解决上述交通问题,修建更多的道路是最直接和最有效的方法。然而,修建新路的巨额资金和城市有限空间的严格限制,使这一方法的有效性大打折扣。近年来,世
7、界各国都非常重视日益严重的交通问题,投入大量人力物力对道路交通运输系统的管理与控制技术进行开发,相继出现了许多不同的交通控制手段和系统,为缓解交通拥挤发挥了巨大的作用。 在以上诸多交通问题中,城市交通问题是困扰城市发展、制约城市经济建设的重要因素。随着城市中的交通线承担了更大量的交通负荷,现有的设施、道路,特别是交通线中承受着高负荷的交叉口,已经很难适应这种发展速度,变得越来越拥挤,成为道路交通的瓶颈,因此采用先进的科学技术手段对城市交叉路口的交通灯实施合理优化控制,对改善城市交通状况有很大的作用。 1.2智能交通系统简介 近年来,迅速发展起来的智能交通系统(Intelligent Trans
8、portation Systems,简称I ONTSj有别于传统的交通改善技术,它是国际上对运用当代高新科技(计算机、信息、通信、自动控制、电子、系统工程等)提高交通运输效率、增强交通安全性的一系列先进技术或技术集成(交通控制与线路导行系统、车辆行驶安全控制系统、交通运输信息服务系统等)的一个统称。 作为基础设施,道路交通运输支撑着人们的日常生活和经济活动,对社会发展起着十分重要的作用;然而不断发生的交通事故、持续的交通拥挤以及交通发展所引起的空气污染、环境破坏也逐渐成为倍受关注的严重社会问题。智能交通系统被认为是缓解这一问题的极具潜力的方法。发达国家从20世纪60年代就开始从事这一领域的研究
9、和开发,并取得了不少有价值的成果。据统计,智能交通运输系统技术的应用可以减少10%的废气排量,20%的交通延时,30%的停车次数。美国Los Angels地区和Texas州在智能交通系统方面投资的效益一成本比率分别是16:1和22:1,收益非常显著。而这一切,都是在基本上没有进行道路改建和引入新的高速车道的情况下取得的。投资ITS所带来的收益可见一斑。 智能交通系统开发的领域主要包括:居民出行与货物运输需求智能诱导系统、交通流优化与运输组织智能化方案生成系统、综合交通枢纽协调疏导信息系统、先进的交通管理系统、车辆运营智能调度管理系统、智能公共交通系统、智能大城市公共交通运输服务系统、货物运输智
10、能型配载运输服务等 我国在20世纪70年代末就已经开始在交通运输和管理中应用电子信息技术。此后的20多年里,在政府的支持与坚持自主开发的基础上通过广泛的国际交流与合作,在ITS领域进行了初步的理论研究、产品开发和示范应用,并取得了一定的成果。一批从事ITS研究 开发的研究中心和生产企业通过理论与实践相结合正在成长。国家科技部1999年批准建立了国家ITS工程技术研究中心(ITSC)2000年又批准建立了国家铁路智能运输系统工程技术研究中心。许多大学和研究机构也纷纷组建ITS研究中心,从事ITS的理论研究和产品研发, 例如东南大学ITS研究中心、武汉理工大学ITS研究中心、吉林大学ITS研究中心
11、、北京交通大学ITS研究中心、同济大学ITS研究中心、华南理工大学ITS研究中心等121。中国交通领域和IT行业的很多企业被ITS巨大的高新技术市场所吸引,纷纷涉足ITS领域进行其产品的开发研究和推广应用,将先进的智能控制技术、信息融合技术、智能信息处理技术与交通工程结合起来,己成为一个崭新的研究方向 为协调和引导中国ITS的发展,2023年初国家科技部会同当时的国家计委、经贸委、公安部、铁道部和交通部等部门,联合成立了全国ITS协调指导小组及办公室,并成立了ITS专家咨询委员会负责组织研究中国的ITS发展总战略、技术政策和技术标准,积极支持有 关部委、地方、企业及科研单位,根据行业和地区特点
12、开展ITS的关键技术研究与应用示范工程,促进ITS研究成果的产业化。 1.3城市交通信号控制概述 按照控制原理的不同,传统的交通信号控制分为定时控制和感应控制.定时控制按事先设定的配时方案运行,根据交通量历史数据进行配时;感应控制是某相位绿时可根据车流量的变化而改变的一种控 制方式,其中车流量可由安装在平面交义日进日道上的车辆检测器测量.一者的控制策略均是基于简单的数学模型,由于城市交通系统中被控对象的不确定性、随机性和过程机理复杂性,现场车辆检测存在 误差,建立精确的数学模型非常困难,这就造成了算法本身就有一定的缺陷.除此之外,即使经多次简化建立的数学模型,它的求解还须简化计算才可完成.对于
13、交通系统这样时变的复杂系统而言其效果往往差强人意.随着人工智能研究热潮的兴起,人工智能方法为智能交通系统的研究提供了坚实的理论基础.针刘传统交通控制的固有缺陷和局限性,许多学者将模糊逻辑、神经网络、遗传算法、蚁群算法、多智能体技术等人工智能基础研究方法同传统的交通控制方法结合应用.一方面,交通系统结构复杂、影响因素多、随机性很强的,利用数学方法解决交通问题的难度很大,所建立的模型往往过于复杂,难于求解, 同时交通流系统的多样性也很难用一种或儿种模型来体现;另一方面,交通系统又是一个动态的时变系统,交通竹理与控制的实时性要求非常高.因此,从实际情况出发,基于数学描述的交通竹理控制方法难以满足在线
14、实时控制的要求,可操作性较差.而人工智能的方法(包括模糊逻辑、人工神经网络、遗传算法等),借鉴人类求解问题的方法,通过知识的表达、推理和学习解决复杂的问题,将以往用纯数 学来描述交通系统转变为用知识或知识与数学模型相结合来描述.1.4国内外城市交通信号控制的发展历程 1868年英国在伦敦市首次使用了燃汽信号灯,用于管理城市交通,这种信号根据铁路信号显示方式由红灯与绿灯组成,这标志着城市交通信号使用的开始141。这时交通警察大多使用手提式照明灯来指挥交通。1914年,美国在克利夫兰城安装使用了人工操作的电气照明信号灯,六年后被日本采用,十年后被英国采用,这种信号设置在交叉口中央的信号塔上,四个方
15、向均有直径为37.5cm的红、绿、黄三色的圆形投光器。许多国家采用后又逐渐给予了改进。1926年,世界上第一台自动控制街道交叉路口的交通信号机在英国研制成 功并开始使用,它采用固定周期控制方式,随后又出现多时段固定周期控制方式。1928年,美国研制成功车辆感应式交通信号灯,使用橡皮管气压式检测器。几年后被英国、日本采用。在交通信号不断改进和发展的同时,用于多个路口协调统一控制的交通信号控制方式 也在不断进步。1917年,美国盐湖城安装使用了人工控制的干道信号协调系统。1922年,美国休斯敦市建立了一个采用电子计时器的干道信号协调系统。1928年,美国研制成功一种灵活的步进式定周期干道信号定时系
16、统,由于其技术简单,可靠性高,价格低廉,很快 被英国、前联邦德国、日本等国广泛应用。 随着交通信号感应控制技术和电子计算机技术的发展,1952年在美国丹佛城出现了采用模拟电子计算机的交通信号控制系统,该系统将单一交叉路口的交通感应控制概念应用于街道交通信号化网络,并用车辆检测器向控制中心输入交通流数据,用模拟电子计算机 进行数据处理,然后再调整各交叉路口的交通信号程序。在随后的11年间,美国建立了100个这种信号控制系统。1963年加拿大多伦多市投入了由IBM650型计算机控制的交通信号协调控制系统,这标志着城市道路交通控制系统进入了一个新的阶段。其后,美国、英国、前联邦德国、日本、澳大利亚等
17、国家相继建成数字电子计算机区域交通控制系统,这种系统一般还配合交通监视系统组成交通管制中心。到八十年代初,全世界建有交通管制中心的城市有300多个。 1.5城市交通信号灯控制的发展方向 越来越多的资料显示表明,城市交通信号控制的研究主要体现在以下三个方面: (1)人工智能(AI)在城市交通信号控制问题中的应用有利于提高当前交通信号控制系统的性能 最近,越来越多的人们开始把注意力集中在人工智能技术应用于交通工程问题上。城市交通信号控制系统在操作方面分为三个重要阶段,即交通数据采集、数据分析与处理、判断与控制。从数据采集和处理,到确定最好的控制动作,以及到动作的实施,关键是全面提高信息决策过程的质
18、量。这些都和相当多的专门知识有关,在很大程度上涉及相关的规章制度,并且受限于现实中的实际约束。归纳上述问题,用AI途径来提高相应的基本职能是可能的。综合起来,难题集中于精确交通信号方案选择体系,交通信号方案选择体系在欧洲己经被广泛用于UTCS田rban Traffic Control System)中。 (2)利用离散时间、滚动区域法(rolling horizon)研究交通信号控制系统 滚动区域法利用最近检测到的数据,对系统现行状态(主要是各个路口的现行排队长,进行估计,为滚动区域的持续时间内搜寻一种优化信号控制方案。滚动区域的时间必须足够长,时间分为两部分,前一段时间执行滚动区域法的优化方
19、案。在滚动区域法的最后一 段时间内,以终端代价函数的形式验证滚动区域法基础上优化的信号方案。若满足要求,则继续执行该方案,否则停止执行,重新优化信号方案。Robertson和Bretherton于1974年最初提出了离散时间滚动区域法,至今该领域的主要研究及发展,大多在欧洲国家。用户网络的离散时间、滚动区域法信号控制系统有待于研究。 (3)分散控制系统仍是未来的一个研究方向 分散控制系统相对集中控制系统来说可以减少信道负载,减少网络控制中灾难性失效。因此,这种控制系统仍是未来研究和发展的一个重要方向。 第二章 城市智能交通控制的基本理论 从应用上来看,日前具有代表性的城市交通控制系统中,英国的
20、SCOOT属于集中式控制系统,澳大利亚的SCAT和德国的MOTION为递阶分层分布式控制系统,但这些系统及其体系结构未考虑到如 何实现控制方式或控制模式多元化及其传统控制方法与人工智能技术集成的问题.西班牙的D.M.Aymerich和法国的G.S cemama对这些问题分别进行了有益的研究和探索,但这些系统的体系结构只强调继承和利用现有的交通系统而不能自成体系,难以体现系统的分层递阶特征,有一定的局限性. 从理论研究上来看,传统的城市智能交通控制方法是通过对城市交通系统建立一定的数学模型,然后运用最优控制理论来求解控制变量.在这类方法中,为了简化问题和解决某些数学技术上的具体限制, 在建模时通
21、常需要对模型进行理想化和一些不确定条件的人为设定,而这些简化与现代城市,尤其是特大型城市的交通系统所具有的非线性、动态时变性等特点是相矛盾的,因此造成了所用最优方法在实际 中并非最优,或者面对大规模城市无法对交通数据进行实时有效的计算等缺点.新的技术和方法的引入显得十分必要和非常迫切,计算机的出现和广泛应用促成了人工智能研究热潮的掀起,而这又必然会导 致包括系统体系结构及控制策略等各方面的调整和改进.许多专家学者从智能控制的角度出发,利用模糊逻辑、人工神经网络等理论来研究这个问题.2.1模糊逻辑(Fuzzy Logic) 模糊逻辑是一种处理不确定性、非线性等问题的有力工具,它与人类思维的某些特
22、征相一致,因此,嵌入到推理技术中具有良好效果.模糊逻辑不需要获取模型中的复杂关系,不需要建立精确的数学模型,是一种基于规则的智能控制方式,特别适用于具有较大随机性的城市交通控制系统.1976年,Pappis和Mamdani就将模糊逻辑用于单路日的交通控制,其仿真结果表明比用传统的控制方法平均减少车辆延误7%左右.我国学者徐冬玲等人则把模糊逻辑用于单路日信号月控制,并用神经网络实现模糊控制,仿真表明控制结果合理、迅速.崔宝侠等在双模糊控制器陇调控制交通信号的基础上,采用模糊推理来替代函数模型,根据输入输出量的大小改变模糊控制器的输入输出变量的论域范围;该算法更加方便地实现了控制器自调整和自适应,
23、车辆平均延误时间改善4.68%至12.24 %.当车流量有突变时,改善效果更明显 2.2人工神经网络(Artificial Neural Networks) 人工神经网络是模拟生物的神经结构及其处理信息方式的一种算法.它具有自适应、自组织和自学习能力,在认知处理、模式识别等方面有很强的优势,最显著特点是具有学习功能.人工神经网络适用于非线性时变性系统的模拟与在线控制,I I适合于交通控制系统这一非线性、时变系统。 1991年,Nahatsuji和Terutoshi通过训练的一个神经网络使其给出某单个交义日的最优绿信比,后来又把研究工作打一展到3个交义日上 .C.J.Barnard等利用BP网络
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 人工智能 城市交通 信号 控制 中的 应用
限制150内