2023年初中数学优秀教案大集合1.docx





《2023年初中数学优秀教案大集合1.docx》由会员分享,可在线阅读,更多相关《2023年初中数学优秀教案大集合1.docx(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年初中数学优秀教案大集合1 课题:二元一次方程 一、教学目标: 1.理解二元一次方程及二元一次方程的解的概念; 2学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解; 3学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示; 4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育. 二、教学重点、难点: 重点:二元一次方程的意义及二元一次方程的解的概念.难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程. 三、教学方法与教学手段: 通过与一元一次方程的比较,加强学生的类比的思想方法; 通过合作学习,
2、使学生认识数学是根据实际的需要而产生发展的观点. 四、教学过程: 1.情景导入: 新闻链接:桐乡70岁以上老人可领取生活补助, 得到方程:80a+150b=902 880.2.新课教学: 引导学生观察方程80a+150b=902 880与一元一次方程有异同? 得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.做一做: (1)根据题意列出方程: 小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ; 在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如
3、果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: . (2)课本P80练习2.判定哪些式子是二元一次方程方程.合作学习: 活动背景爱心满人间记求是中学学雷锋、关爱老人志愿者活动.问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等.得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.并提出注意二元一次方程
4、解的书写方法.试一试: 检验下列各组数是不是方程2x=y+1的解: 是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.3.合作学习: 给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的 x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便? 出示例题:已知二元一次方程 x+2y=8. (1)用关于y的代数式表示x; (2)用关于x的代数式表示y; (3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y
5、=8的三个解.(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快) 4.课堂练习: (1)已知:5xm-2yn=4是二元一次方程,则m+n= ; (2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ; (3) 已知 是关于x,y的方程2x+ay=5的一个解,则a= . 5.你能解决吗? 小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案. 6.课堂小结: (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式); (2)二元一次方程解的不定性和相关性; (3
6、)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.7.布置作业:(1)教材P82; (2)作业本. 教学设计意图: 依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学.并对教学内容进行适当的重组、补充和加工等,创造性地使用了教材.所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力.这两个方面的设计贯穿整堂课,
7、把知识内容和情感体验自然连贯起来.其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的.重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象.在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便. 41二元一次方程教学设计 衢州市兴华中学 徐勇 一、教材的地位与作用 二元一次方程是九
8、年义务教育课程标准实验教科书浙教版教材七年级下册第四章二元一次方程组的第一节。在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地 位。 二、教学目标 (一)知识与技能: 1.了解二元一次方程概念; 2.了解二元一次方程的解的概念和解的不唯一性; 3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。 (二)数学思考: 体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。 (三)问题解决: 初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。获得
9、求二元一次方程解的思路方法。 (四)情感态度: 培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。 三、教学重点与难点 教学重点:二元一次方程及其解的概念。 教学难点:二元一次方程的概念里含未知数的项的次数的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。 四、教法与学法分析 教法:情境教学法、比较教学法、阅读教学法。 学法:阅读、比较、探究的学习方式。 五、教学过程 (一) 创设情境,引入新课 从学生熟悉的姚明受伤事件引入。 师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。 (1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了1
10、2分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球) 师:能用方程解决吗?列出来的方程是什么方程? (2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球) 师:这个问题能用一元一次方程解决吗?,你能列出方程吗? 设姚明投进了x 个两分球,罚进了y个球,可列出方程_。 (3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。你知道他分别投进几个两分球、几个三分球吗? 设易建联投进了x个两分球,y个三分球,可列出方程_。 师:对于所列出来的三个方程,后面两个
11、你觉的是一元一次方程吗?那这两个方程有什么相同点吗?你能给它们命一个名称吗? 从而揭示课题。 (设计意图:第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;第 二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的导火索,引起学生的学习兴趣,以我要学的主人翁姿态投入学习,而且会学、乐学。) (二) 探索交流,汲取新知 1、概念思辩,归纳二元一次方程的特征 师:那到底什么叫二元一次方程?(学生思考后回答
12、) 师:翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?(同学们思考后回答) 师:根据概念,你觉得二元一次方程应具备哪几个特征? 活动:你自己构造一个二元一次方程。 快速判断:下列式子中哪些是二元一次方程? (设计意图:这一环节是本课设计的重点,为加深学生对含有未知数的项的次数的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对项的次数的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把项的次数形象化 。在归纳二元一次方程特征的时候,引导学生理解含有未知数的项的次数都是一次实际上是说明方程的两边是整式
13、。在判断的过程中,是在书本的基础上补充的,是让学生先认识这种形式,后面出现用关于一个未知数的代数式表示另一个未知数实际上是方程变形;是方程两边都出现了x,强化概念里两个未知数是不一样的;是再次理解项的次数。) 2、二元一次方程解的概念 师:前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗? 师:你是怎么考虑的?(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的) 利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。(学生看书本上
14、的记法) 使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。 (设计意图:通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:使方程左右两边相等的一对未知数的取值。引导学生看书本,目的是让学生在记法上体会一对未知数的取值的真正含义。) 3、二元一次方程解的不唯一性 对于2x+3y=16,你觉得这个方程还有其它的解吗?你能试着写几个吗? 师:这些解你们是如何算出来的? (设计意图:设计此环节,目的有三个:首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;其次是让学生体会到二元一次方程的解的不唯一性;最后让学生感受如何得到一个正确的解:只要取定
15、一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。) 4、如何去求二元一次方程的解 例 已知方程3x+2y=10 (1)当x=2时,求所对应的y 的值; (2)取一个你自己喜欢的数作为x的值,求所对应的y 的值; (3)用含x的代数式表示y; (4)用含y的代数式表示x; (5)当x=-2,0时,所对应的y 的值是多少? (6)写出方程3x+2y=10的三个解.(设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把
16、一个未知数的值代入哪一个方程计算会更简单,形成正迁移,引导学生体会用关于一个未知数的代数式表示另一个未知数的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。以此突破本节课的难点。) 5、大显身手: 课内练习第2题 (三) 梳理知识,课堂升华 本节课你有收获吗?能和大家说说你的感想吗? (四) 作业布置 必做题:书本作业题 1、 2、 3、4 选做题:书本作业题 5、6 六、设计说明 本节授课内容属于概念课教学。数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。只有真正理解数学概念,才能理解数
17、学。二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解含有未知数的项的次数都是一次这句话的内涵。 在二元一次方程的解的教学过程中,采用的是让学生体会一个解不止一个解无数个解的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。 在讲授用含一个未知数的代数式表示另一个未知数的时候,采用一般特殊一般特殊的教学流程,以期突破难点。首先抛出问题这几个解你是如何求的,此时注意的聚焦点是二元一次方程;其次学生归纳先定一个未知数的取值,代入原
18、方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会用含一个未知数的代数式表示另一个未知数在求值过程中的简洁性,强化这种代数形式。另外,在引导学生推导用含一个未知数的代数式表示另一个未知数的过程中,渗透数学的主元思想和转化思想。 4.2二元一次方程组教学设计 浙江省温州市乐清虹桥实验中学 陈谱锦 一教学目标: 1认知目标:1)了解二元一次方程组的概念。 2)理解二元一次方程组的解的概念。 3)会用列表尝
19、试的方法找二元一次方程组的解。 2能力目标:1)渗透把实际问题抽象成数学模型的思想。 2)通过尝试求解,培养学生的探索能力。 3情感目标:1)培养学生细致,认真的学习习惯。 2)在积极的教学评价中,促进师生的情感交流。 二教学重难点 重点:二元一次方程组及其解的概念 难点:用列表尝试的方法求出方程组的解。 三教学过程 (一)创设情景,引入课题 1.本班共有40人,请问能确定男女生各几人吗?为什么? (1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40) (2)这是什么方程?根据什么? 2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少? 3.本班男生比
20、女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示? 两个方程中的x表示什么?类似的两个方程中的y都表示? 象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。 4.点明课题:二元一次方程组。 设计意图:从学生身边取数据,让他们感受到生活中处处有数学 (二)探究新知,练习巩固 1二元一次方程组的概念 (1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。 让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解. (2)练习:判断下列是不是二元一次方程组: x+y=3, x+y=200, 2x-3=7, 3x+4y=3 y+z
21、=5, x=y+10, 2y+1=5, 4x-y2=2 学生作出判断并要说明理由。 2二元一次方程组的解的概念 (1)由学生给出引例的答案,教师指出这就是此方程组的解。 (2)练习:把下列各组数的题序填入图中适当的位置: x=1 x= -2 x= - x= y=0 y=2 y=1 y= 方程x+y=0的解,方程2x+3y=2的解,方程组 x+y=0 的解。 2x+3y=2 (3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。 (4)练习:已知 x=0 是方程组 x-b=y 的解,求a,b的值。 y=0.5 5x+2a=2y (三)合作探索,尝试求解 现在我们一起来探索如何寻找方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 数学 优秀 教案 集合

限制150内