2023年纳米材料的结构及其热力学特性的研究与应用.docx
《2023年纳米材料的结构及其热力学特性的研究与应用.docx》由会员分享,可在线阅读,更多相关《2023年纳米材料的结构及其热力学特性的研究与应用.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年纳米材料的结构及其热力学特性的研究与应用 纳米材料的结构及其热力学特性的研究与应用 张成12721617 (上海大学材料科学与工程学院,上海 200072) 摘要:文章简要地概述了纳米材料的结构和基本效应,分别从纳米材料的热容、晶格参数、及纳米材料参与反应时反应体系的化学平衡吸附能等方面对纳米材料热力学的研究进展进行了阐述,并对热力学在纳米材料中的应用做了介绍,同时对其应用前景进行了展望。 关键字:纳米材料;热力学;效应;结构 Development and Application forTheStructure and ThermodynamicFunctions of TheNa
2、nomaterials ZhangCheng 12721617 (School of Materials Science and Engineering,Shanghai University,Shanghai 200072,china) Abstract: The structure of the nanometer materials and the characterristics of nano material are briefly introduced in this paper.The thermodynamics properties of nanomaterials are
3、 usually different from the status of bulk materials.Thus,it is very important to stuty the thermodynamics of nanomatericals.The review focuses the status of research on thermodynamics of nanomaterials including heat capacity, lattice parameters and other thermodynamic functions.In addition, the dev
4、elopment of thermodynamics in this field is introduced with the prospection for its application.Keywords:nanomaterials; thermodynamics; structure; functions 1.前言 纳米材料已成为材料科学和凝聚态物理领域中一个研究热点。这是由于它不仅具有独特的结构特征( 含有大量的内界面),能为深入研究固体内界面结构与性能提供良好的条件,而且它还表现出一系列优异的物理、化学及力学性能,能为提高材料的综合性能发展新一代高性能材料创造优异的条件。 纳米热力学
5、(nanothermodynamics)这个名词最早正式出现在2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时使用了这一名词1,Giebultowicz在nature上撰文认为纳米尺度热力学为热力学这一传统理论提供了新的发展契机2。 美国加利福尼亚大学的Hill是最早真正涉足纳米热力学这一领域的科学家,他的一系列工作为纳米热力学理论的应用奠定了基础3-5。事实上,近年来已经有科研工作者利用这一理论得出了一些传统 热力学理论难以 - 1 图1.纳米颗粒材料的SEM图 Fig.1 Scanning electron microscope picture of nano
6、particles materials 2.2 纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。 对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异 纳米材料主要由纳米晶粒和晶粒界面两部分组成。纳米晶粒内部的微观结构与传统的晶体结构基本一致,只是由于每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变。尽管每个晶粒都非常小,但与传统粗晶材料类似,其内部同样会存在着各种点阵缺陷:如点缺陷、位错、孪晶界等。在纳米材料中,点缺陷及位错等低维缺陷很不稳定,经
7、充分弛豫后,很难在纳米晶粒中继续存在。而面缺陷则相对比较稳定,即使在纳米微粒中也可以有孪晶界存在8。 纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。界面原子密度低,界面上邻近原子配位数发生变化,界面原子间距差别大。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积
8、(单位质量材料的表面积)很大,一般在102104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例 - 3 表面能。随着纳米粒子尺寸的减小,比表面积急剧加大,表面原子数及比例迅速增大。例如,粒径为5nm时,比表面积为180m2/g,表面原子的比例为50%;粒径为2nm时,比表面积为450m2/g,表面原子的比例为80%。由于表面原子数增多,比表面积大,原子配位数不足,存在未饱和键,导致了纳米
9、颗粒表面存在许多缺陷,使这些表面具有很高的活性,特别容易吸附其他原子或与其他原子发生化学反应。这种表面原子的活性不但引起纳米粒子表面输运和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料11,12。 2.3.2 体积效应 由于纳米粒子体积极小,所包含的原子数很少,因此许多现象就不能用通常有无限个原子的块状物质的性质加以说明,这种特殊的现象称之为体积效应。其中有名的久保理论就是体积效应的典型例子。久保理论是针对金属纳米粒子费米面附近电子能级状态分布而提出的。随着纳米粒子直径减小,能级间距增大,电子移动困难,电阻
10、率增大,从而使能隙变宽,金属导体将变为绝缘体13。 2.3.2 界面效应 纳米材料具有非常大的界面,界面的原子排列是相当混乱的。原子在外力变形的条件下很容易迁移,因此表现出很好的韧性与一定的延展性,使材料具有新奇的界面效应。研究表明,人的牙齿之所以具有很高的强度,是因为它是由磷酸钙等纳米材料构成的。呈纳米晶粒的金属要比传统的粗晶粒金属硬3 5倍13。 3.纳米材料热力学特性 3.1热容 1996年,Bai等14在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减小50%。1998年,Zhang等15研究了粒度和温度对纳米粒子热容的影响
11、,建立了一个预测热容的理论模型,结果表明: 过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。2023年,Eroshenko等16把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积 的扩大,将导致多相纳米体系总的热容的减小。他们还建立了多相纳米体系热容的理论模型,从理论上说明了体系热容随界面的扩大而降低。对于苯液滴,当半径达到1.05nm时,热容为零,而水滴热容等于零时的半径为1.51nm。2023年,徐慧等17建立了一维纳米随机链模型,应用点阵动力学的方法计算了一维纳米晶体的熵、热容以及振动
12、自由能等,发现纳米晶体的熵比单晶的熵值高,这些结果可以用纳米晶体的特殊结构来 - 5 3.5 纳米粒子的吸附热力学 强吸附性是纳米粒子的重要特性之一。量子化学是研究纳米粒子吸附性质的主要方法之一,但是这些理论研究主要是计算计算了某个原子簇下的吸附能,且原子簇中包含的原子个数还均较少,仅有几个或十几个。在一些模拟实验中,纳米材料同普通块体材料的吸附分离效果一样也受值浓度、吸附时间、温度等因素的影响,其吸附等温线符合Langmuir、Freundlich等温曲线。不同温度下等温吸附曲线的测定和等量吸附焓的计算表明: 多壁碳纳米管对偏二甲肼的吸附是吸热的。 4.热力学在纳米材料中的应用 迄今,关于纳
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 纳米 材料 结构 及其 热力学 特性 研究 应用
限制150内