2023年初三数学教学计划(初三数学教学计划安排).docx





《2023年初三数学教学计划(初三数学教学计划安排).docx》由会员分享,可在线阅读,更多相关《2023年初三数学教学计划(初三数学教学计划安排).docx(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年初三数学教学计划(初三数学教学计划安排)初三数学教学计划1本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。一。完成九年级下册的内容1.掌握圆的概念,圆的基本知识,会建立数学模型来解决实际问题。2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。3.加强学生对数学知识的认识方法,培养他们正确的学习方法。4、通过关於图形和证明的教学,进一步培学生的
2、逻辑思维能力。与空间观念。二。本学期在提高教学质量上采取的措施。1、中考复习前,认真研读中考说明,理解本学科考试水平要求层次的内涵,与新课程标准相联系,以总复习书为依据,制定复习计划。注重知识的应用性、探究性、综合性、教育性和时代性。复习指导的实施要充分体现课标精神和课改方向。2、研究近几年中考数学命题的走向,研究中考复习策略。平时考试中,以模拟中考命题,试题来源注重信息的收集和新题型的探索,着重考查学生基本的数学思想和方法。力争每周一个知识点,周末检测。每次测完后及时批阅,争取放假前发到学生手中,便于学生及时做总结(学生将错题改在作业本上),周一师生共同检查总结效果。教师要清楚每一个学生的学
3、习成绩层次,细致地分层教学,利用成绩追踪档案,加强对边缘生和学困生的辅导工作。3、要重视解题后的反思,要把知识归类、方法归类。每个知识点的复习要以题代点,课堂上选取的例题力争体现本节课复习要点,特别是概念性的练习要练透练全,避免混淆。注意知识间的渗透,以点牵线,以线成面,帮助学生构建完整的知识体系。4、复习阶段的每节课容量都很大,难免会出现个别学生思想上的波动,这就要求我们教师注意他们的动向,多鼓励,多关注,培养他们的积极性。三。教学具体安排。1周。圆及证明回顾。2周。总体与样本3周。复习数与式4周。复习方程与不等式5周。复习函数6周。复习函数7周。复习图形的认识8周。复习图形与变换9周。复习
4、图形与坐标10周。复习概率与统计11周。复习课题学习12周。专题复习13周。专题14周。重要知识点的再梳理15周。一些常见题的训练1619周。做往年的中考题20周。考试方法和考试心理的辅导。初三数学教学计划2教学目标:1.知识与技能:(1)能证明等腰梯形的性质和判定定理(2)会利用这些定理计算和证明一些数学问题2.过程与方法:通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。3.情感态度与价值观:通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。重点、难点:重点:等腰梯形的性质和判定难点:如何应用等腰梯形的性质和判定解决具体问题。教学过程(一)知识梳理:知识点
5、1:等腰梯形的性质1(1)文字语言:等腰梯形同一底上的两底角相等。(2)数学语言:在梯形ABCD中ADBC,AB=CDB=CA=D(等腰梯形同一底上的两个底角相等)(3)本定理的作用:在梯形中常用的添加辅助线平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。知识点2:等腰梯形的性质2(1)文字语言:等腰梯形的两条对角线相等(2)数学语言:在梯形ABCD中ADBC,AB=DCAC=BD(等腰梯形对角线相等)(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相
6、等和垂直。知识点3:等腰梯形的判定(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。(2)数学语言:在梯形ABCD中B=C梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)(3)本定理的作用:在梯形中常用添加辅助线补全三角形把原来的梯形化为两个三角形(4)说明:判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。例1. 我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。(1)在下面4个等腰梯形中,分别作出常
7、用的4种辅助线(作图工具不限)(2)在(1)的条件下,若ACBD,DEBC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。解:(1)略。(2)DE=(AD+BC)过D作DFAC交BC延长线于点FADBC,四边形ACFD是平行四边形AD=CF, AC=DFAC=BDBD=DF又ACBD,BDDF即BDF为等腰直角三角形DEBF,则DE=BF,DE=(BC+CF)=(BC+AD)例2. 如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m, 斜坡BC与下底CD的夹角为60,路基高AE为,求下底CD的宽。解:过点B作BFCD于F四边形ABCD是等腰梯形BC=ADBF=AE,B
8、FCD,AECDRtBCFRtADE在RtBCF中,C=60CBF=30CF=BC即BC=2CFBC2=CF2+BF2即CF=2ABCD,BFCD,AECD四边形ABFE是矩形EF=AB=6mCD=DE+EF+CF=AB+2CF=6+22=10(m)例3. 已知如图,梯形ABCD中,ABDC,AD=DC=CB,AD、BC的延长线相交于G,CEAG于E,CFAB于F(1)请写出图中4组相等的线段。(已知的相等线段除外)(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG(2)证明AG=BG,因为在梯形ABCD中,ABDC
9、,AD=BC,所以梯形ABCD为等腰梯形GAB=GBAAG=BG课堂小结:本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。初三数学教学计划3一、学生知识状况分析学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一
10、元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1且一次项系数为偶数的一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课配方法内容从属于“方程与不等
11、式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:1、会用开方法解形如(x?m)2?n(n?0)的方程,理解配方法,会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程;2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;3、体会转化的数学思想方法;4、能根据具体问题中的实际意义检验结果的合理性。三、教学
12、过程分析本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。第一环节:复习回顾活动内容:1、如果一个数的平方等于4,则这个数是 ,若一个数的平方等于7,则这个数是 。一个正数有几个平方根,它们具有怎样的关系?2、用字母表示完全平方公式。3、用估算法求方程x2?4x?2?0的解?你喜欢这种方法吗?为什么?你能设法求出其精确解吗?活动目的:以问题串的形式引导学生逐步深入地思考,通过前两个问题,引导学生复习开平方和完全平方公式,通过后一个问题的回答让学生进一步体会用估计法解一元二次方程较麻烦,激发学生的求知
13、欲,为学生后面配方法的学习作好铺垫。实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。第3问由学生独立练习,通过练习,学生既复习了估算法,同时又进一步体会到了估算法较麻烦,达到了激发学生探索新解法的目的。第二环节:情境引入活动内容:(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100CM2正方形,请你帮他想一想,这个正方形的边长应为 ;若它的面积为75CM2,则其边长应为 。(选1个同学口答)(2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为 。若变化后的面积为48cm2呢?(小组合作交流)(3)你会解下列一元二次方程吗?(
14、独立练习)x2?5; (x?2)2?5; x2?12x?36?0。(4)上节课,我们研究梯子底端滑动的距离x(m)满足方程x2?12x?15?0,你能仿照上面几个方程的解题过程,求出x的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形
15、的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm,根据题意列出了一元二次方程(x?3)2?64;(x?3)2?48然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。在第2问的基础上,学生很快解决了第3问。但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏
16、笔。第三环节:讲授新课活动内容1:做一做:(填空配成完全平方式,体会如何配方)填上适当的数,使下列等式成立。(选4个学生口答)x2?12x?_?(x?6)2 x2?6x?_?(x?3)2x2?8x?_?(x?_)2 x2?4x?_?(x?_)2问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2?ax的式子如何配成完全平方式?(小组合作交流)活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为
17、后面学习掌握配方法解一元二次方程做好充分的准备。实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。通过小组的合作交流,学生发现要把形如x2?ax的式子a如何配成完全平方式,只要加上一次项系数一半的平方即加上()2即可。而2且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。 活动内容2
18、:解决例题(1)解方程:x2+8x-9=0.(师生共同解决)解:可以把常数项移到方程的右边,得x2+8x=9两边都加上(一次项系数8的一半的平方),得x2+8x+42=9+42.(x+4)2=25开平方,得 x+4=5,即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解决梯子底部滑动问题:x2?12x?15?0(仿照例1,学生独立解决) 解:移项得 x2+12x=15,两边同时加上62得,x2+12x+62=15+36,即(x+6)2=51两边开平方,得x+6=51 所以:x1?6,x2?51?6,但因为x表示梯子底部滑动的距离所以x2?51?6 不合题意舍去。 答:梯子底
19、部滑动了(51?6)米。活动内容3:及时小结、整理思路用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)活动目的:通过对例1和例2的讲解,规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成(x?m)2?n(n?0)形式,同时通过例2提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍。由于此问题在情境引入时出现过,因此也达到前后呼应的目的。最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两
20、个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。活动内容4、应用提高例3:如图,在一块长和宽分别是16米和12米的长方形耕地上挖两条宽度相等的水渠,使剩余的耕地面积等于原来长方形面积的一半,试求水渠的宽度。(先独立思考,再小组合作交流)活动目的:在前两个例题的基础上,通过例3进一步提高学生分析问题解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。实际效果:大部分学生通过独立思考,结合
21、图形很快列出了方程,在交流过程中小组成员之间产生了分歧,有的同学认为,如果设水渠的宽为x米,则1?12?16;有的同学认为如果设水渠的宽为x21米,则方程应该是16?12?12x?16x?x2?12?16,并且给出了合理的解2方程应该是(16?x)(12?x)?释;有的同学则认为,如果剩余的耕地面积等于原来的一半则意味着水渠的面积也等于原来长方形面积的一半,所以方程可以列为:12x?16x?x2?1?12?16。面对这些问题,组织学生解他们2所列出的几个方程,然后再让小组成员合作交流讨论,通过讨论,学生发现这三种方法都正确,并且指出第一种方法可以利用平移水渠,把分割成的四部分拼在一起,构成了一
22、个较大的矩形(如下图),然后再利用矩形的面积公式列出方程,此种方法在解决此类问题时最简单。这样通过学生之间的争论、辩论提高了课堂效率,激发了学生学习数学的热情,达到了资源共享。第四环节:练习与提高活动内容:解下列方程(1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9活动目的:对本节知识进行巩固练习。实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。第五环节:课堂小结活动内容:师生互相交流、总结配
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 数学 教学计划 初三 安排

限制150内