2023年初一常用几何证明的定理总结.docx
《2023年初一常用几何证明的定理总结.docx》由会员分享,可在线阅读,更多相关《2023年初一常用几何证明的定理总结.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年初一常用几何证明的定理总结 第一篇:初一常用几何证明的定理总结 初一常用几何证明的定理总结 平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律: 1x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数。即第一、二象限及y轴正方向也称y轴正半轴上的点的纵坐标为正数;第三、四象限及y轴负方向也称y轴负半轴上的点的纵坐标为负数。 反之,假如点Pa,b在x轴上方,则b0;假如Pa,b在x轴下方,则b0;假如Pa,b在x轴下方,则b0。 (2)y轴将坐标平面分成两部分,y轴左侧的点的横坐标为负数;y轴右侧的点的横坐标为正数。即其次、三象限和x轴的负半轴上的点的横坐标为负
2、数;第一、四象限和x轴正半轴上的点的横坐标为正数。 3规定坐标原点的坐标为0,0 4 (5) 第三篇:几何证明定理 几何证明定理 一.直线与平面平行的(判定) 1.判定定理.平面外一条直线假如平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面) 二.平面与平面平行的(判定) 1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行 2.关键:判定两个平面是否有公共点 三.直线与平面平行的(性质) 1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直
3、线 四.平面与平面平行的(性质) 1.性质:假如两个平行平面同时和第三个平面相交,那么他们的交线平行 2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行 五:直线与平面垂直的(定理) 1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 2.应用:假如一条直线与一个平面垂直,那么这条直线垂直于这个平面内全部的直线(线面垂直线线垂直) 六.平面与平面的垂直(定理) 1.一个平面过另一个平面的垂线,则这两个平面垂直 (或者做二面角判定) 2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换 七.平面与平面垂直的(性质) 1.性质
4、一:垂直于同一个平面的两条垂线平行 2.性质二:假如两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 3.性质三:假如两个平面互相垂直,那么经过第一个平面内的一点垂直于其次个平面内的直线,在第一个平面内(性质三没什么用,可以不用记) 以上,是立体几何的定理和性质整理.是确定要记住的基本! 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35推论1三个角都相等的三角形是等边三角形
5、 36推论2有一个角等于60的等腰三角形是等边三角形 37在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半 38直角三角形斜边上的中线等于斜边上的一半 39定理线段垂直平分线上的点和这条线段两个端点的距离相等 40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41线段的垂直平分线可看作和线段两端点距离相等的全部点的集合42定理1关于某条直线对称的两个图形是全等形 43定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理假如两个图形的对应点连线被
6、同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理假如三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 48定理四边形的内角和等于360 49四边形的外角和等于360 50多边形内角和定理n边形的内角的和等于(n-2)180 51推论随便多边的外角和等于360 52平行四边形性质定理1平行四边形的对角相等 53平行四边形性质定理2平行四边形的对边相等 54推论夹在两条平行线间的平行线段相等 55平行四边形性质定理3平行四边形的对角线互相平分 56平行四边形判定定理1两组对角分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 常用 几何 证明 定理 总结
限制150内