点到直线的距离与两条平行线间的距离(教学设计)(共6页).doc
《点到直线的距离与两条平行线间的距离(教学设计)(共6页).doc》由会员分享,可在线阅读,更多相关《点到直线的距离与两条平行线间的距离(教学设计)(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上3.3.3 -3.3.4点到直线的距离、两条平行直线间的距离(教学设计)教学目标:1.知识与技能:1)理解点到直线距离公式的推导,2)熟练掌握点到直线的距离公式,会求两条平行直线间距离;2.过程与方法 经历两点间距离公式的推导过程,会用点到直线距离公式求解两平行线距离3.情感、态度与价值观:认识事物之间在一定条件下的转化,用联系的观点看问题教学重点、难点重点:点到直线的距离公式.难点:点到直线距离公式的理解与应用.教学过程(一)创设情境,导入新课前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的交点问题,两点间的距离公式。逐步熟悉了利用代数方法研究几
2、何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P到直线的距离。 用POWERPOINT打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学。要求学生思考一点到直线的距离计算?能否用两点间距离公式进行推导? (二) 师生互动,探究新知1点到直线距离公式及其推导:点到直线的距离为: (1)提出问题在平面直角坐标系中,如果已知某点P的坐标为,直线方程中A0或B0时,怎样用点的坐标和直线的方程直接求点P到直线的距离呢?学生可自由讨论。(2)数行结合,分析问题,提出解决方案学生已有了点到直线的距离的概念,即由
3、点P到直线的距离d是点P到直线的垂线段的长.这里体现了“画归”思想方法,把一个新问题转化为 一个曾经解决过的问题,一个自己熟悉的问题。画出图形,分析任务,理清思路,解决问题。方案一:设点P到直线的垂线段为PQ,垂足为Q,由PQ可知,直线PQ的斜率为(A0),根据点斜式写出直线PQ的方程,并由与PQ的方程求出点Q的坐标;由此根据两点距离公式求出PQ,得到点P到直线的距离为d 此方法虽思路自然,但运算较繁.下面我们探讨别一种方法方案二:设A0,B0,这时与轴、轴都相交,过点P作轴的平行线,交于点;作轴的平行线,交于点,由得.所以,PPSS由三角形面积公式可知:SPPS所以可证明,当A=0时仍适用(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 距离 平行线 教学 设计
限制150内