《天津《分类加法计数原理与分步乘法计数原理》同步检测.pdf》由会员分享,可在线阅读,更多相关《天津《分类加法计数原理与分步乘法计数原理》同步检测.pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、打印版 打印版 分类加法计数原理与分步乘法计数原理 1从 A 地到 B 地要经过 C 地和 D 地,从 A 地到 C 地有 3 条路,从 C 地到 D 地有 2 条路,从 D 地到 B 地有 4 条路,则从 A 地到 B 地不同走法的种数是()A3249 B1 C32424 D1113 解析:选 C.由题意从 A 地到 B 地需过 C、D 两地,实际就是分三步完成任务,用乘法原理 2某学生去书店,发现 3 本好书,决定至少买其中一本,则购买方式共有()A3 种 B6 种 C7 种 D9 种 解析:选 C.分 3 类:买 1 本书,买 2 本书和买 3 本书,各类的购买方式依次有 3 种、3种和
2、 1 种,故购买方式共有 3317(种)3(2011 年高考课标全国卷)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13 B.12 C.23 D.34 解析:选 A.甲、乙两位同学参加 3 个小组的所有可能性有 339(种),其中甲、乙两人参加同一个小组的情况有 3(种)故甲、乙两位同学参加同一个兴趣小组的概率 P3913.4将 3 封信投入 6 个信箱内,不同的投法有_种 解析:第 1 封信有 6 种投法,第 2、第 3 封信也分别有 6 种投法,因此共有 666216 种投法 答案:216 一、选择
3、题 1现有 4 件不同款式的上衣和 3 条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()A7 B12 C64 D81 解析:选 B.要完成配套,分两步:第 1 步,选上衣,从 4 件上衣中任选一件,有 4 种不同选法;第 2 步,选长裤,从 3 条长裤中任选一条,有 3 种不同选法故共有 4312种不同的配法 2从 A 地到 B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发 3 次,火车发 4 次,轮船发 2 次,那么一天内乘坐这三种交通工具的不同走法为()A1113 B3429 C34224 D以上都不对 答案:B 3十字路口来往的车辆,如果不允许回头,共有
4、不同的行车路线()A24 种 B16 种 打印版 打印版 C12 种 D10 种 解析:选 C.完 成该任务可分为四类,从每一个方向入口都可作为一类,如图:从第 1 个入口进入时,有 3 种行车路线;同理,从第 2 个,第 3 个,第 4 个入口进入时,都分别有 3 种行车路线,由分类加法计数原理可得共有 333312 种不同的行车路线,故选 C.4 从集合0,1,2,3,4,5,6中任取两个互不相等的数 a,b 组成复数 abi,其中虚数有()A30 个 B42 个 C36 个 D35 个 解析:选 C.第一步取 b 的数,有 6 种方法,第二步取 a 的数,也有 6 种方法,根据乘法计数原
5、理,共有 6636 种方法 5从集合1,2,3,4,5中任取 2 个不同的数,作为直线 AxBy0 的系数,则形成不同的直线最多有()A18 条 B20 条 C25 条 D10 条 解析:选 A.第一步取 A 的值,有 5 种取法,第二步取 B 的值有 4 种取法,其中当 A1,B2 时,与 A2,B4 时是相同的;当 A2,B1 时,与 A4,B2 时是相同的,故共有 54218(条)6用 1,2,3 三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有()A36 个 B18 个 C9 个 D6 个 解析:选 B.分 3 步完成,1,2,3 这三个数中必有
6、某一个数字被使用 2 次 第 1 步,确定哪一个数字被使用 2 次,有 3 种方法;第 2 步,把这 2 个相同的数字排在四位数不相邻的两个位置上有 3 种方法;第 3 步,将余下的 2 个数字排在四位数余下的两个位置上,有 2 种方法 故有 33218 个不同的四位数 二、填空题 7加工某个零件分三道工序,第一道工序有 5 人,第二道工序有 6 人,第三道工序有4 人,从中选 3 人每人做一道工序,则选法有_种 解析:选第一、第二、第三道工序各一人的方法数依次为 5、6、4,由分步乘法计数原理知,选法总数为 N564120.答案:120 8如图是某校的校园设施平面图,现用不同的颜色作为各区域
7、的底色,为了便于区分,要求相邻区域不能使用同一种颜色 若有 6 种不同的颜色可选,则有_种不同的着色方案 解析:操场可从 6 种颜色中任选 1 种着色;餐厅可从剩下的 5 种颜色中任选 1 种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的 4 种颜色中任选 1 种着色;教学区和宿打印版 打印版 舍区、餐厅的颜色都不能相同,故可从其余的 4 种颜色中任选 1 种着色根据分步乘法计数原理,共有 6544480 种着色方案 答案:480 9从 1,2,3,4,7,9 六个数中,任取两个数作对数的底数和真数,则所有不同的对数的值的个数为_ 解析:(1)当取 1 时,1 只能为真数,此时对数的值为
8、 0.(2)不取 1 时,分两步:取底数,5 种;取真数,4 种 其中 log23log49,log32log94,log24log39,log42log93,N154417.答案:17 三、解答题 108 张卡片上写着 0,1,2,7 共 8 个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排放百位,从 1,2,7 共 7 个数中选一个有 7 种选法;再排十位,从除去百位的数外,剩余的 7 个数(包括 0)中选一个,有 7 种选法;最后排个位,从除前两步选出的数外,剩余的 6 个数中选一个,有 6 种选法由分步乘法计数原理,共可以组成 776294 个不同的三位数 11从
9、黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出 3 种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法?解:若黄瓜种在第一块土地上,则有 3216 种不同种植方法同理,黄瓜种在第二块、第三块土地上,均有 3216(种)故不同的种植方法共有 6318(种)12某校学生会由高一年级 5 人,高二年级 6 人,高三年级 4 人组成(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选 1 人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人分别参加市里组织的两项活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有 5 种选择;第二类,从高二年级选一人,有 6 种选择;第三类,从高三年级选一人,有 4 种选择由分类加法计数原理,共有 56415 种选法(2)分三步完成:第一步,从高一年级选一人,有 5 种选择;第二步,从高二年级选一人,有 6 种选择;第三步,从高三年级选一人,有 4 种选择 由分步乘法计数原理,共有 564120 种选法(3)分三类:高一、高二各一人,共有 5630 种选法;高一、高三各一人,共有 5420种选法;高二、高三各一人,共有 6424 种选法;由分类加法计数原理,共有 30202474 种选法
限制150内