阶段滚动练(三)第1~10章--备战2022年高考数学一轮复习配套word试题(创新设计版).pdf
《阶段滚动练(三)第1~10章--备战2022年高考数学一轮复习配套word试题(创新设计版).pdf》由会员分享,可在线阅读,更多相关《阶段滚动练(三)第1~10章--备战2022年高考数学一轮复习配套word试题(创新设计版).pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、阶段滚动练(三)第 110 章(本试卷分选择题和非选择题两部分,满分 150 分,考试用时 120 分钟)选择题部分(共 40 分)一、选择题(本大题共 10 小题,每小题 4 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的)1(2021湖州中学质检一)已知集合 A1,0,1,2,Bx|x2x242 020成立的最小正整数 n 为()A10 B11 C12 D13 答案 C 解析 由an1anan2 得 an1a2n2an,即 an11(an1)2,所以 an(a11)2n1142n11,则由 an42 020得 2n12 020,n 的最小值为 12,故选C.8(2020
2、全国卷)设 F1,F2是双曲线 C:x2y231 的两个焦点,O 为坐标原点,点 P 在 C 上且|OP|2,则PF1F2的面积为()A.72 B3 C.52 D2 答案 B 解析 法一 由题知 a1,b 3,c2,F1(2,0),F2(2,0),如图,因为|OF1|OF2|OP|2,所以点 P 在以 F1F2为直径的圆上,故 PF1PF2,则|PF1|2|PF2|2(2c)216.由双曲线的定义知|PF1|PF2|2a2,所以|PF1|2|PF2|22|PF1|PF2|4,所以|PF1|PF2|6,所以PF1F2的面积为12|PF1|PF2|3.故选 B.法二 由双曲线的方程可知,双曲线的焦
3、点 F1,F2在 x 轴上,且|F1F2|2 134.设点 P 的坐标为(x0,y0),则x20y2031,x20y202,解得|y0|32.所以PF1F2的面积为12|F1F2|y0|124323.故选 B.9(2021七彩阳光联盟适考)函数 f(x)ln xax1,xb,x33x2(2a)x1,xb,恒有零点的条件不可能是()Aa3 Ba2 Ca0,b1 Da0,be 答案 B 解析 由题意可得函数有零点,即 f(x)0 有解,即可化为 ax1ln x,xb,x33x22x,xb有解,即函数 yax1 与函数 yln x,xb,x33x22x,xb的图象有交点在同一平面内画出两函数的图象,
4、因为直线 yax1 恒过定点(0,1),所以可知当 a3 时,必有公共交点,所以选项 A 满足条件;同理,选项 C,D也满足条件;当 b2 时,如图所示,直线 yax1 与 yln x,xb,x33x22x,xb的图象可以没有交点,所以此时不满足条件,故选B.10(2017浙江卷)已知随机变量 i满足 P(i1)pi,P(i0)1pi,i1,2.若 0p1p212,则()AE(1)E(2),D(1)D(2)BE(1)D(2)CE(1)E(2),D(1)E(2),D(1)D(2)答案 A 解析 由题意可知 i(i1,2)服从两点分布,E(1)p1,E(2)p2,D(1)p1(1p1),D(2)p
5、2(1p2),又0p1p212,E(1)E(2),把方差看作函数 yx(1x),根据 01212知,D(1)0,cos 20,则 sin 2cos 22 105.14(2021北京丰台区期末)一个四面体的顶点在空间直角坐标系 O xyz 中的坐标分别是(0,0,0),(0,0,1),(1,1,0),(1,0,1),则此四面体在 xOy 坐标平面上的正投影图形的面积为_ 答案 12 解析(1,0,1)、(0,0,1)在 xOy 坐标平面上的投影点的坐标分别为(1,0,0),(0,0,0),故四面体的正投影为 A(0,0,0),B(1,0,0),C(1,1,0)构成的三角形 ABC,因为|AB|1
6、,|AC|2,|BC|1,故|AB|BC|,|AB|2|BC|2|AC|2,所以ABC 为等腰直角三角形,故 SABC121112.15(2021北京大兴区一模)直线 l:ykxk 与圆 C:(x1)2y21 交于 A,B两点,当 k_时,ABC 的面积最大,最大面积为_ 答案 77 12 解析 根据题意,直线 l:ykxk 与圆 C:(x1)2y21 交于 A,B 两点,设圆心 C 到直线的距离为 d,圆 C:(x1)2y21 的圆心 C(1,0),半径 r1;由题意知 0d1,则ABC 的面积 S12d21d2d2(1d2)d21d2212,当且仅当d21d2,即d22时,ABC 的面积最
7、大;此时 d|2k|1k222,解得 k77.16(2021名校仿真训练五)一个袋中装有 10 个大小相同只有颜色不同的黑球、白球和红球已知从袋中任意摸出 2 个球,至少得到 1 个白球的概率是79,则袋中的白球个数为_,若从袋中任意摸出 3 个球,记得到白球的个数为,则随机变量 的数学期望 E()_ 答案 5 32 解析 设袋中有白球 x 个,则从袋中摸出 2 个球,至少得到 1 个白球的概率是 1C210 xC21079,解得 x5,则袋中白球的个数为 5.从袋中任意摸出 3 个球,记得到白球的个数为,则 的所有可能取值为 0,1,2,3,且 P(0)C35C310112,P(1)C25C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 阶段 滚动 10 备战 2022 年高 数学 一轮 复习 配套 word 试题 创新 设计
链接地址:https://www.taowenge.com/p-82081032.html
限制150内